
CHAPTER 7

Partial Differentiation

From the previous two chapters we know how to differentiate functions
of one variable. But many functions in economics depend on several
variables: output depends on both capital and labour, for example. In
this chapter we show how to differentiate functions of several vari-
ables and apply this to find the marginal products of labour and
capital, marginal utilities, and elasticities of demand. We use
differentials to find the gradients of isoquants, and hence determine
marginal rates of substitution.
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�1. Partial Derivatives

The derivative of a function of one variable, such as y(x), tells us the gradient of the function:
how y changes when x increases. If we have a function of more than one variable, such as:

z(x, y) = x3 + 4xy + 5y2

we can ask, for example, how z changes when x increases but y doesn’t change. The answer
to this question is found by thinking of z as a function of x, and differentiating, treating y
as if it were a constant parameter:

∂z

∂x
= 3x2 + 4y

This process is called partial differentiation. We write ∂z
∂x rather than dz

dx , to emphasize that
z is a function of another variable as well as x, which is being held constant.

∂z

∂x
is called the partial derivative of z with respect to x

∂z
∂x is pronounced “partial dee z by dee x”.

Similarly, if we hold x constant, we can find the partial derivative with respect to y:

∂z

∂y
= 4x + 10y

Remember from Chapter 4 that you can think of z(x, y) as a “surface” in 3 dimensions.
Imagine that x and y represent co-ordinates on a map, and z(x, y) represents the height of
the land at the point (x, y). Then, ∂z

∂x tells you the gradient of the land as you walk in the
direction of increasing x, keeping the y co-ordinate constant. If ∂z

∂x > 0, you are walking
uphill; if it is negative you are going down. (Try drawing a picture to illustrate this.)
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118 7. PARTIAL DIFFERENTIATION

Exercises 7.1: Find the partial derivatives with respect to x and y of the functions:

(1)(1) f(x, y) = 3x2 − xy4 (3) g(x, y) =
lnx

y

(2) h(x, y) = (x + 1)2(y + 2)

Examples 1.1: For the function f(x, y) = x3e−y:

(i) Show that f is increasing in x for all values of x and y.

∂f

∂x
= 3x2e−y

Since 3x2 > 0 for all values of x, and e−y > 0 for all values of y, this derivative is
always positive: f is increasing in x.

(ii) For what values of x and y is the function increasing in y?

∂f

∂y
= −x3e−y

When x < 0 this derivative is positive, so f is increasing in y. When x > 0, f is
decreasing in y.

1.1. Second-order Partial Derivatives

For the function in the previous section:

z(x, y) = x3 + 4xy + 5y2

we found:
∂z

∂x
= 3x2 + 4y

∂z

∂y
= 4x + 10y

These are the first-order partial derivatives. But we can differentiate again to find second-
order partial derivatives. The second derivative with respect to x tells us how ∂z

∂x changes as
x increases, still keeping y constant.

∂2z

∂x2
= 6x

Similarly:
∂2z

∂y2
= 10

We can also differentiate ∂z
∂x with respect to y, to find out how it changes when y increases.

This is written as ∂2z
∂y∂x and is called a cross-partial derivative:

∂2z

∂y∂x
=

∂

∂y

(
∂z

∂x

)
= 4

Similarly:
∂2z

∂x∂y
=

∂

∂x

(
∂z

∂y

)
= 4

Note that the two cross-partial derivatives are the same: it doesn’t matter whether we differ-
entiate with respect to x first and then with respect to y, or vice-versa. This happens with
all “well-behaved” functions.
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A function z(x, y) of two variables has four second-order
partial derivatives:

∂2z

∂x2
,

∂2z

∂y2
,

∂2z

∂x∂y
and

∂2z

∂y∂x

but
∂2z

∂x∂y
=

∂2z

∂y∂x

1.2. Functions of More Than Two Variables

A function of n variables:

f(x1, x2, . . . , xn)

has n first-order partial derivatives:

∂f

∂x1
,

∂f

∂x1
, . . . ,

∂f

∂xn

and n2 second-order partial derivatives:

∂2f

∂x2
1

,
∂2f

∂x2∂x1
,

∂2f

∂x3∂x1
, . . .

Again we find that it doesn’t matter which variable we differentiate with respect to first: the
cross-partials are equal. For example:

∂2f

∂x3∂x1
=

∂2f

∂x1∂x3

1.3. Alternative Notation

There are several different ways of writing partial derivatives. For a function f(x, y) the
first-order partial derivatives can be written:

∂f

∂x
or fx and

∂f

∂y
or fy

and the second-order partial derivatives are:

∂2f

∂x2
or fxx and

∂2f

∂y2
or fyy and

∂2f

∂x∂y
or fxy

For a function f(x1, x2, x3, . . . ) we sometimes write:

f1 for
∂f

∂x1
, f2 for

∂f

∂x2
, f11 for

∂2f

∂x2
1

, f13 for
∂2f

∂x1∂x3
etc.
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Exercises 7.2:
(1)(1) Find all the first- and second-order partial derivatives of the function

f(x, y) = x2 + 3yx, verifying that the two cross-partial derivatives are the same.

(2) Find all the first- and second-order partial derivatives of g(p, q, r) = q2e2p+1 + rq.

(3) If z(x, y) = ln(2x + 3y), where x > 0 and y > 0, show that z is increasing in both
x and y.

(4) For the function f(x, y, z) = (x2 + y2 + z2)3 find the partial derivatives fx, fxx,
and fxz.

(5) If F (K, L) = AKαLβ, show that FKL = FLK .

(6) For the utility function u(x1, x2, x3) = x1 + 2x2x3, find the partial derivatives u23

and u12.

Further Reading and Exercises
• Jacques §5.1
• Anthony & Biggs §11.1 and §11.2
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2. Economic Applications of Partial
Derivatives, and Euler’s Theorem

2.1. The Marginal Products of Labour and Capital

Suppose that the output produced by a firm depends on the amounts of labour and capital
used. If the production function is

Y (K, L)
the partial derivative of Y with respect to L tells us the the marginal product of labour:

MPL =
∂Y

∂L
The marginal product of labour is the amount of extra output the firm could produce if it
used one extra unit of labour, but kept capital the same as before.
Similarly the marginal product of capital is:

MPK =
∂Y

∂K

Examples 2.1: For a firm with production function Y (K, L) = 5K
1
3 L

2
3 :

(i) Find the marginal product of labour.

MPL =
∂Y

∂L
=

10
3

K
1
3 L− 1

3

(ii) What is the MPL when K = 64 and L = 125?

MPL =
10
3

(64)
1
3 (125)−

1
3 =

10
3
× 4× 1

5
=

8
3

(iii) What happens to the marginal product of labour as the number of workers increases?

Differentiate MPL with respect to L:
∂2Y

∂L2
= −10

9
K

1
3 L− 4

3 < 0

So the MPL decreases as the labour input increases – the firm has diminishing returns
to labour, if capital is held constant. This is true for all values of K and L.

(iv) What happens to the marginal product of labour as the amount of capital increases?

Differentiate MPL with respect to K:
∂2Y

∂K∂L
=

10
9

K− 2
3 L− 2

3 > 0

So the MPL increases as the capital input increases – when there is more capital, an
additional worker is more productive.
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2.2. Elasticities of Demand

If a consumer has a choice between two goods, his demand x1 for good 1 depends on its
price, p1, but also on the consumer’s income, m, and the price of the other good. The
demand function can by written:

x1(p1, p2,m)
The own-price elasticity of demand is the responsiveness of demand to changes in the price
p1, defined just as in Chapter 6 except that we now have to use the partial derivative:

ε11 =
p1

x1

∂x

∂p1

But in addition we can measure the responsiveness of the demand for good 1 to changes in
the price of good 2, or the consumer’s income:

For the demand function x1(p1, p2,m)

• The own-price elasticity is: ε11 =
p1

x1

∂x1

∂p1

• The cross-price elasticity is: ε12 =
p2

x1

∂x1

∂p2

• The income elasticity is: η1 =
m

x1

∂x1

∂m

2.3. Euler’s Theorem

Remember from Chapter 4 that a function of two variables is called homogeneous of degree
n if f(λx, λy) = λnf(x, y). If a production function is homogeneous of degree 1, for example,
it has constant returns to scale. Euler’s Theorem states that:

If the function f(x, y) is homogeneous of degree n:

x
∂f

∂x
+ y

∂f

∂y
= nf(x, y)

Examples 2.2: f(x, y) = 2x2y2 + xy3

(i) Show that f is homogenous.

f(λx, λy) = 2(λx)2(λy)2 + λx(λy)3

= 2λ4x2y2 + λ4xy3

= λ4f(x, y)

(ii) Verify that it satisfies Euler’s Theorem.
∂f

∂x
= 4xy2 + y3 and

∂f

∂y
= 4x2y + 3xy2

⇒ x
∂f

∂x
+ y

∂f

∂y
= 4x2y2 + xy3 + 4x2y2 + 3xy3

= 8x2y2 + 4xy3

= 4f(x, y)
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Exercises 7.3: Economic Applications of Partial Derivatives
(1)(1) For the production function Q(K, L) = (K − 2)L2:

(a) Find the marginal product of labour when L = 4 and K = 5.
(b) Find the marginal product of capital when L = 3 and K = 4.
(c) How does the marginal product of capital change as labour increases?

(2) Show that the production function Y = (K
1
2 +L

1
2 )2 has constant returns to scale.

Verify that it satisfies Euler’s Theorem.

(3) For the demand function x1(p1, p2,m) =
p2m

p2
1

(a) Find the own-price, cross-price, and income elasticities.

(b) Show that the function is homogeneous of degree zero. Why is it economi-
cally reasonable to expect a demand function to have this property?

(4) Write down Euler’s Theorem for a demand function x1(p1, p2,m) that is homo-
geneous of degree zero. What does this tell you about the own-price, cross-price,
and income elasticities?

Further Reading and Exercises
• Jacques §5.2
• Anthony and Biggs §12.4
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�3. Differentials

3.1. Derivatives and Approximations: Functions of One Variable

x

y

. ..............................
..............................

.............................

.............................

.............................

.............................

...............................

..................................

....................................

......................................

.........................................

∆x

∆y

If we have a function of one variable y(x), and x increases by a
small amount ∆x, how much does y change? We know that when
∆x is small:

dy

dx
≈ ∆y

∆x
Rearranging:

∆y ≈ dy

dx
∆x

Examples 3.1: If we know that the marginal propensity to consume is 0.85, and national
income increases by £2bn, then from ∆C ≈ dC

dY ∆Y , aggregate consumption will increase by
0.85× 2 = £1.7bn.

3.2. Derivatives and Approximations: Functions of Several Variables

Similarly, if we have a function of two variables, z(x, y), and x increases by a small amount
∆x, but y doesn’t change:

∆z ≈ ∂z

∂x
∆x

But if both x and y change, we can calculate the change in z from:

∆z ≈ ∂z

∂x
∆x +

∂z

∂y
∆y

Examples 3.2: If the marginal product of labour is 1.5, and the marginal product of capital
is 1.8, how much will a firm’s output change if it employs one more unit of capital, and one
fewer worker?

∆Y ≈ ∂Y

∂L
∆L +

∂Y

∂K
∆K

Putting: ∂Y
∂L = 1.5, ∂Y

∂K = 1.8, ∆K = 1, and ∆L = −1, we obtain: ∆Y = 0.3.

3.3. Differentials

The approximation

∆z ≈ ∂z

∂x
∆x +

∂z

∂y
∆y

becomes more accurate as the changes in the arguments ∆x and ∆y beome smaller. In the
limit, as they become infinitesimally small, we write dx and dy to represent infinitesimal
changes in x and y. They are called differentials. The corresponding change in z, dz, is
called the total differential.

The total differential of the function z(x, y) is

dz =
∂z

∂x
dx +

∂z

∂y
dy
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Examples 3.3: Find the total differential of the following functions:

(i) F (x, y) = x4 + xy3

∂F

∂x
= 4x3 + y3 and

∂F

∂y
= 3xy2

⇒ dF = (4x3 + y3)dx + 3xy2dy

(ii) u(x1, x2, x3) = 2x1 + 5x2 + 9x3

du = 2dx1 + 5dx2 + 9dx3

3.4. Using Differentials to Find the Gradient of an Isoquant
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...................

...
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........
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..........
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dy

dx

A

B

x

y

z = k1 z = k2 z = k3

Remember from Chapter 4 that we
can represent a function z(x, y) by
drawing the isoquants: the lines

z(x, y) = k

for different values of the constant k.

To find the gradient at the point A,
consider a small change in x and y
that takes you to a point B on the
same isoquant.

Then the change in z is given by: dz =
∂z

∂x
dx +

∂z

∂y
dy

But in moving from A to B, z does not change, so dz = 0:
∂z

∂x
dx +

∂z

∂y
dy = 0

Rearranging this equation gives us dy
dx :

The gradient of the isoquant of the function z(x, y) at any
point (x, y) is given by:

dy

dx
= −

∂z
∂x
∂z
∂y

Examples 3.4: The diagram above shows the function z = x2 + 2y2.

(i) Which isoquant passes through the point where x = 2 and y = 1?
At (2,1), z = 6, so the isoquant is x2 + 2y2 = 6.

(ii) Find the gradient of the isoquant at this point.

dz =
∂z

∂x
dx +

∂z

∂y
dy = 0

⇒ 2xdx + 4ydy = 0

⇒ dy

dx
= − x

2y
So at (2,1) the gradient is −1.
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3.5. Economic Application: The Marginal Rate of Technical Substitution

dK

dL

L

Y (L, K) = y0

K

.

..........

..........

.........

..........
..........
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...........
...........
....

...........
...........
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............
...........

............
..........

..............
........

.................
......

......................
..

.......................... ........................... .............................
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...........
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...........
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............
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................
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....................
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.......................... .......................... ...........................

For a production function Y (L,K), the isoquants show
the combinations of labour and capital that can be used
to produce the same amount of output.

At any point (L,K), the slope of the isoquant is
the Marginal Rate of Technical Substitution between
labour and capital.

The MRTS tells you how much less capital you need, to produce the same quantity of out-
put, if you increase labour by a small amount dL.

Using the same method as in the previous section, we can say that along the isoquant output
doesn’t change:

dY =
∂Y

∂L
dL +

∂Y

∂K
dK = 0

⇒ dK

dL
= −

∂Y
∂L
∂Y
∂K

⇒ MRTS = −MPL

MPK

The Marginal Rate of Technical Substitution between two inputs to production is the (neg-
ative of the) ratio of their marginal products.

Exercises 7.4: Differentials and Isoquants
(1)(1) A firm is producing 1550 items per week, and its total weekly costs are £12000. If

the marginal cost of producing an additional item is £8, estimate the firm’s total
costs if it increases weekly production to 1560 items.

(2) A firm has marginal product of labour 3.4, and marginal product of capital 2.0.
Estimate the change in output if reduces both labour and capital by one unit.

(3) Find the total differential for the following functions:

(a) z(x, y) = 10x3y5

(b) f(x1, x2, x3, x4) = x2
1 + x2x3 − 5x2

4 + 7

(4) For the function g(x, y) = x4 + x2y2, show that slope of the isoquant at the point

(x, y) is −2x2 + y2

xy
. What is slope of the indifference curve g = 10 at the point

where x = 1?

(5) Find the Marginal Rate of Technical Substitution for the production function
Y = K(L2 + L).

Further Reading and Exercises
• Jacques §5.1 and §5.2.
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4. Economic Application: Utility and
Indifference Curves

If a consumer has well-behaved preferences over two goods, good 1 and good 2, his preferences
can be represented by a utility function u(x1, x2).

Then the marginal utilities of good 1 and good 2 are given by the partial derivatives:

MU1 =
∂u

∂x1
and MU2 =

∂u

∂x2

dx2

dx1

x1

u(x1, x2) = u0

x2

.
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His indifference curves are the isoquants of u.

At any point (x1, x2), the slope of the iso-
quant is the Marginal Rate of Substitution
between good 1 and good 2.

MRS =
dx2

dx1

The MRS is the rate at which he is willing to
substitute good 2 for good 1, remaining on the
same indifference curve.

As before, we can find the marginal rate of substitution at any bundle (x1, x2) by taking the
total differential of utility:

du =
∂u

∂x1
dx1 +

∂u

∂x2
dx2 = 0

⇒ dx2

dx1
= −

∂u
∂x1

∂u
∂x2

⇒ MRS = −MU1

MU2

The Marginal Rate of Substitution between two goods is the (negative of the) ratio of their
marginal utilities.

4.1. Perfect Substitutes

For the utility function: u(x1, x2) = 3x1 + x2

we find:

MU1 = 3 and MU2 = 1 so MRS = −3

The MRS is constant and negative, so the indifference curves are downward-sloping straight
lines. The consumer is always willing to substitute 3 units of good 2 for a unit of good 1,
whatever bundle he is consuming. The goods are perfect substitutes.

Any utility function of the form u(x1, x2) = ax1 +bx2, where a and b are positive parameters,
represents perfect substitutes.
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4.2. Cobb-Douglas Utility

For the utility function
u(x1, x2) = xa

1x
b
2

where a and b are positive parameters, we find:

MU1 = axa−1
1 xb

2 and MU2 = bxa
1x

b−1
2

⇒ MRS = −axa−1
1 xb

2

bxa
1x

b−1
2

= −ax2

bx1

From this expression we can see:
• The MRS is negative so the indifference curves are downward-sloping.
• As you move along an indifference curve, increasing x1 and decreasing x2, the MRS

becomes less negative, so the indifference curve becomes flatter. Hence the indiffer-
ence curves are convex (as in the diagram on the previous page).

4.3. Transforming the Utility Function

If a consumer has a preference ordering represented by the utility function u(x1, x2), and f(u)
is a monotonic increasing function (that is, f ′(u) > 0 for all u) then v(x1, x2) = f(u(x1, x2))
is a utility function representing the same preference ordering, because whenever a bundle
(x1, x2) is preferred to (y1, y2):

u(x1, x2) > u(y1, y2) ⇔ f(u(x1, x2)) > f(u(y1, y2))

The two utility functions represent the same preferences, provided that we are only inter-
ested in the consumer’s ordering of bundles, and don’t attach any significance to the utility
numbers.
Examples 4.1: If a consumer has a Cobb-Douglas utility function:

u(x1, x2) = xa
1x

b
2

f(u) = lnu is a monotonic increasing function so his preferences can also be represented
by

v(x1, x2) = ln
(
xa

1x
b
2

)
= a lnx1 + b lnx2

Note that if we calculate the MRS for the function v we find:

MU1 =
a

x1
and MU2 =

b

x2
so MRS = −ax2

bx1

Although their marginal utilities are different, v has the same MRS as u.

Exercises 7.5: Utility and Indifference curves
(1)(1) Find the MRS for each of the following utility functions, and hence determine

whether the indifference curves are convex, concave, or straight:

(a) u = x
1
2
1 + x

1
2
2 (b) u = x2

1 + x2
2 (c) u = ln(x1 + x2)

(2) Prove that for any monotonic increasing function f(u), the utility function
v(x1, x2) = f(u(x1, x2)) has the same MRS as the utility function u.
(Hint : Use the Chain Rule to differentiate v.)

Further Reading and Exercises
• Jacques §5.2.
• Varian “Intermediate Microeconomics” Chapter 4
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5. The Chain Rule and Implicit
Differentiation

5.1. The Chain Rule for Functions of Several Variables

If z is a function of two variables, x and y, and both x and y depend on another variable, t
(time, for example), then z also depends on t. We have:

If z = z(x, y), and x and y are functions of t, then:

dz

dt
=

∂z

∂x

dx

dt
+

∂z

∂y

dy

dt

Note the similarity of this rule to
• the Chain Rule for functions of one variable in Chapter 6, and
• the formula for the Total Differential in section 3.3

Examples 5.1: Suppose the aggregate output of a country is given by:

Y = AKαLβ

where K is the capital stock, and L is the labour force. If the capital stock and the labour
force are each growing according to:

L(t) = L0e
nt and K(t) = K0e

mt

(i) What are the proportional growth rates of capital and labour?
As in Chapter 6 we have:

dL

dt
= nL0e

nt = nL(t) and similarly for K(t)

So labour is growing at a constant proportional rate n, and capital is growing at con-
stant proportional rate m.

(ii) What is the rate of growth of output?
Applying the Chain Rule:

dY

dt
=

∂Y

∂K

dK

dt
+

∂Y

∂L

dL

dt

⇒ dY

dt
= αAKα−1Lβ ×mK + βAKαLβ−1 × nL

= αmAKαLβ + βnAKαLβ

= (αm + βn)Y

So output grows at a constant proportional rate (αm + βn).

5.2. Implicit Differentiation

The equation:
x2 + 2xy + y3 − 4 = 0

describes a relationship between x and y. If we plotted values of x and y satisfying this
equation, they would form a curve in (x, y) space. We cannot easily rearrange the equation
to find y as an explicit function of x, but we can think of y as an implicit function of x, and
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ask how y changes when x changes – or in other words, what is dy
dx? To answer this question,

we can think of the left-hand side of the equation

x2 + 2xy + y3 − 4 = 0

as a function of two variables, x and y. And in general, if we have any equation:

f(x, y) = 0

we can find the gradient of the relationship between x and y in exactly the same way as we
found the gradient of an isoquant in section 3.4, by totally differentiating:

df =
∂f

∂x
dx +

∂f

∂y
dy = 0

⇒ ∂f

∂y
dy = −∂f

∂x
dx

⇒ dy

dx
= = −

∂f
∂x
∂f
∂y

Finding the gradient of y(x) when y is an implicit function of x is called implicit differen-
tiation. The method explained here, using the total derivative, is the same as the one in
Jacques. Anthony and Biggs use an alternative (but equivalent) method, applying the Chain
Rule of the previous section.
Examples 5.2: Implicit Differentiation

(i) Find dy
dx if x2 + 5xy + y3 − 4 = 0

(2x + 5y)dx + (5x + 3y2)dy = 0
(5x + 3y2)dy = −(2x + 5y)dx

dy

dx
= = − 2x + 5y

5x + 3y2

(ii) Find dq
dp if q2 + e3p − pe2q = 0

(2q − 2pe2q)dq + (3e3p − e2q)dp = 0
(2q − 2pe2q)dq = (e2q − 3e3p)dp

dq

dp
= =

e2q − 3e3p

2(q − pe2q)

Exercises 7.6: The Chain Rule and Implicit Differentiation
(1)(1) If z(x, y) = 3x2 + 2y3, x = 2t + 1, and y = 4t − 2, use the chain rule to find dz

dt
when t = 2.

(2) If the aggregate production function is Y = K
1
3 L

2
3 , what is the marginal product

of labour? If the labour force grows at a constant proportional rate n, and the
capital stock grows at constant proportial rate m, find the proportional growth
rate of (a) output, Y and (b) the MPL.

(3) If xy2 + y − 2x = 0, find
dy

dx
when y = 2.

Further Reading and Exercises
• Jacques §5.1
• Anthony and Biggs §11.3, §12.1, §12.2 and §12.3.
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	6. Comparative Statics

Examples 6.1:

(i) Suppose the inverse demand and supply functions for a good are:

pd = a− q and ps = bq + c where b > 0 and a > c > 0

How does the quantity sold change (a) if a increases (b) if b increases?

Putting pd = ps and solving for the equilibrium quantity: q∗ =
a− c

1 + b

.
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We can answer the question by differentiating with respect
to the parameters:

∂q∗

∂a
=

1
1 + b

> 0

This tells us that if a increases – that is, there is an upward
shift of the demand function – the equilibrium quantity will
increase. (You can, of course, see this from the diagram.)

Similarly
∂q∗

∂b
< 0, so if the supply function gets steeper q∗

decreases.

(ii) Suppose the inverse demand and supply functions for a good are:

pd = a + f(q) and ps = g(q) where f ′(q) < 0 and g′(q) > 0

How does the quantity sold change if a increases?

Here we don’t know much about the supply and demand functions, except that they
slope up and down in the usual way. The equilibrium quantity q∗ satisfies:

a + f(q∗) = g(q∗)

We cannot solve explicitly for q∗, but this equation defines it as an implicit function of
a. Hence we can use implicit differentiation:

da + f ′(q∗)dq∗ = g′(q∗)dq∗ ⇒ dq∗
da

=
1

g′(q∗)− f ′(q∗)
> 0

Again, this tells us that q∗ increases when the demand function shifts up.

The process of using derivatives to find out how an equilibrium depends on the parameters
is called comparative statics.

Exercises 7.7: If the labour supply and demand functions are

ls = aw and ld =
k

w
where a and k are positive parameters:

(1)(1) What happens to the equilibrium wage and employment if k increases?

(2) What happens to the equilibrium wage and employment if a decreases?

Further Reading and Exercises
• Jacques §5.3 gives some macroeconomic applications of Comparative Statics.
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Solutions to Exercises in Chapter 7

Exercises 7.1:
(1) ∂f

∂x = 6x−y4 ∂f
∂y = −4xy3

(2) ∂h
∂x = 2(x + 1)(y + 2)
∂h
∂y = (x + 1)2

(3) ∂g
∂x = 1

xy
∂g
∂y = − ln x

y2

Exercises 7.2:
(1) fx = 2x + 3y, fy = 3x,

fxx = 2, fyy = 0,
fyx = fxy = 3.

(2) gp = 2q2e2p+1,
gq = 2qe2p+1 + r,
gr = q,
gpp = 4q2e2p+1,
gqq = 2e2p+1,
grr = 0,
gqp = gpq = 4qe2p+1,
grp = gpr = 0,
grq = gqr = 1.

(3) ∂z
∂x = 2

2x+3y > 0
∂z
∂y = 3

2x+3y > 0
(4) fx = 6x(x2 + y2 + z2)2

fxx = 6(x2 + y2 + z2)2 +
24x2(x2 + y2 + z2)
= 6(x2 + y2 + z2)
× (5x2 + y2 + z2)
fxz = 24xz(x2 + y2 + z2)

(5) FK = αAKα−1Lβ

FL = βAKαLβ−1

FKL = FLK

= αβAKα−1Lβ−1

(6) u23 = 2, u12 = 0

Exercises 7.3:
(1) (a) ∂Q

∂L = 2L(K − 2)
= 24

(b) ∂Q
∂K = L2 = 9

(c) It increases:
∂2Q

∂L∂K = 2L > 0

(2) Y (λK, λL)
= (λ

1
2 K

1
2 + λ

1
2 L

1
2 )2

= (λ
1
2 (K

1
2 + L

1
2 )2

= λ(K
1
2 + L

1
2 )2

= λY (K, L)
FK = K− 1

2 (K
1
2 + L

1
2 )

FL = L− 1
2 (K

1
2 + L

1
2 )

⇒ KFK + LFL

= (K
1
2 + L

1
2 )2

(3) (a) ε11 = −2, ε12 = 1,
η1 = 1

(b) x1(λp1, λp2, λpm)
= λp2λm

λ2p2
1

= p2m
p2
1

If all prices dou-
ble, but income dou-
bles too, demands
shouldn’t change.

(4) p1
∂x1
∂p1

+p2
∂x1
∂p2

+m∂x1
∂m = 0

Dividing by x1 gives:
ε11 + ε12 + η1 = 0

Exercises 7.4:
(1) ∆C = dC

dq ∆q = 8× 10
= 80
⇒ C = £12000 + £80
= £12080

(2) ∆Y = 3.4×−1 + 2×−1
= −5.4

(3) (a) dz = 30x2y5dx
+ 50x3y4dy

(b) df = 2x1dx1

+ x3dx2 + x2dx3

− 10x4dx4

(4) (4x3 + 2xy2)dx
+ 2x2ydy = 0
⇒ dy

dx = −4x3+2xy2

2x2y

= −2x2+y2

xy

When x = 1 and g = 10,

y = 3.
Then dy

dx = −11
3

(5) MRTS = −2KL+K
L2+L

= −K(2L+1)
L(L+1)

Exercises 7.5:
(1) (a) MRS = −(x2

x1
)

1
2

Convex
(b) MRS = −(x1

x2
)

Concave
(c) MRS = −1

Straight
(2) ∂v

∂x1
= f ′(u) ∂u

∂x1
and

∂v
∂x2

= f ′(u) ∂u
∂x2

so the ratio of the MUs is
the same for u and v.

Exercises 7.6:
(1) dz

dt = 6x× 2 + 6y2 × 4
= 6× 5× 2+6× 36× 4 =
924

(2) MPL = 2
3K

1
3 L− 1

3

(a) 1
3m + 2

3n

(b) 1
3m− 1

3n
(3) When y = 2, x = −1.

dy
dx = 2−y2

2xy+1 = 2
3

Exercises 7.7:

(1) In equilibrium, w =
√

k
a

and l =
√

ak.
∂w
∂k = 1

2
√

ak
> 0 and

∂l
∂k = 1

2

√
a
k > 0

so both w and l increase
when k increases.

(2) ∂w
∂a = −1

2

√
ka−

3
2 < 0 and

∂l
∂a = 1

2

√
k
a > 0

so w increases and l de-
creases when a decreases.

1This Version of Workbook Chapter 7: September 29, 2004
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�� ��Worksheet 7: Partial Differentiation

Quick Questions

(1) Obtain the first-order partial derivatives of each of the following functions:

f (x, y) = 4x2y + 3xy3 + 6x; g (x, y) = e2x+3y; h (x, y) =
x + y

x− y
.

(2) Show that the function

f (x, y) =
√

xy +
x2

y

is homogeneous of degree 1. Find both partial derivatives and hence verify that it
satisfies Euler’s Theorem.

(3) A firm has production function Q(K, L) = KL2, and faces demand function P d(Q) =
120− 1.5Q.
(a) Find the marginal products of labour and capital when L = 3 and K = 4.
(b) Write down the firm’s revenue, R, as a function of output, Q, and find its

marginal revenue.
(c) Hence, using the chain rule, find the marginal revenue product of labour when

L = 3 and K = 4.

(4) A consumer has a quasi-linear utility function u(x1, x2) = x
1
2
1 +x2. Find the marginal

utilities of both goods and the marginal rate of substitution. What does the MRS
tell us about the shape of the indifference curves? Sketch the indifference curves.

(5) For a firm with Cobb-Douglas production function Y (K, L) = aKαLβ, show that the
marginal rate of technical substitution depends on the capital-labour ratio. Show
on a diagram what this means for the shape of the isoquants.

(6) The supply and demand functions in a market are

Qs = kp2 and Qd = D(p)

where k is a positive constant and the demand function slopes down: D′(p) < 0.
(a) Write down the equation satisfied by the equilibrium price.
(b) Use implicit differentiation to find how the price changes if k increases.

Longer Questions

(1) A consumer’s demand for good 1 depends on its own price, p1, the price of good 2,
p2, and his income, y, according to the formula

x1 (p1, p2, y) =
y

p1 +
√

p1p2
.

(a) Show that x1 (p1, p2, y) is homogeneous of degree zero. What is the economic
interpretation of this property?

(b) The own-price elasticity of demand is given by the formula

ε11 (p1, p2, y) =
p1

x1

∂x1

∂p1
.

Show that |ε11| is always less than 1.
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(2) Tony and Gordon have utility functions:

Tony : UT (x, y) = x4y2

Gordon : UG(x, y) = lnx + 1
2 ln y

(a) Find their marginal utilities for both goods, and show that they both have the
same marginal rate of substitution.

(b) What is the equation of Tony’s indifference curve corresponding to a utility
level of 16? Show that it is convex, and draw it.

(c) Does Gordon have the same indifference curves? Explain carefully how their
indifference curves are related.

(d) Show that Gordon has “diminishing marginal utility”, but Tony does not.
(e) Do Tony and Gordon have the same preferences?

(3) Robinson Crusoe spends his 9 hour working day either fishing or looking for co-
conuts. If he spends t hours fishing, and s hours looking for coconuts, he will catch
f(t) = t

1
2 fish, and collect c(s) = 2s

1
3 coconuts.

(a) If Crusoe’s utility function is U(f, c) = ln(f) + ln(c), show that the marginal
rate at which he will substitute coconuts for fish is given by the expression:

MRS = − c

f

(b) Show that production possibility frontier of the economy is:

f2 +
( c

2

)3
= 9

(c) Find an expression for the marginal rate of transfomation between fish and
coconuts.

(d) Crusoe plans to spend 1 hour fishing, and the rest of his time collecting coconuts.
If he adopts this plan:

(i) How many of each can he consume?
(ii) What is his MRS?
(iii) What is his MRT?
(iv) Would you recommend that he should spend more or less time fishing?

Why? Draw a diagram to illustrate.
(e) What would be the optimal allocation of his time?


