C2 Jan 06

1. Use the Trapezium Rule with six ordinates to find an approximate value for the integral $\int_{0}^{1} \frac{1}{2+x^{3}} dx$

Show your working and give your answer correct to four significant figures. [4]

Solution

$$h = \frac{1 - 0}{5} = 0.2$$

x			
0	$\frac{1}{2+0^3} = 0.5$		= 0.5
0.2	$\frac{1}{2+0.2^3} = 0.498007668$	×2	= 0.996015336
0.4	$\frac{1}{2+0.4^3} = 0.484496124$	×2	= 0.968992248
0.6	$\frac{1}{2+0.6^3} = 0.451263537$	×2	= 0.902527074
0.8	$\frac{1}{2+0.8^3} = 0.398089172$	×2	= 0.796178344
1	$\frac{1}{2+1^3} = 0.33333333333333333333333333333333333$		= 0.33333333
		sum	= 4.497046335

$$Area \approx \frac{0.2}{2} [4.497046335] = 0.4497 \ (4 \ d.p.)$$

- 2. Find all values of θ in the interval $0^\circ \le \theta \le 360^\circ$ satisfying
 - (a) $4\cos^2\theta \cos\theta = 2\sin^2\theta$ [6]
 - (b) $\tan\theta = -\sqrt{3}$ [2]
 - (c) $\sin 2\theta = \frac{1}{2}$ [3]

Solution

(a) $4\cos^2\theta - \cos\theta = 2\sin^2\theta$ and using $\sin^2\theta = 1 - \cos^2\theta$ we get

 $4\cos^{2}\theta - \cos\theta = 2(1 - \cos^{2}\theta)$ $4\cos^{2}\theta - \cos\theta = 2 - 2\cos^{2}\theta$ $6\cos^{2}\theta - \cos\theta - 2 = 0$ Factorising gives $(3\cos\theta - 2)(2\cos\theta + 1) = 0$ either $3\cos\theta - 2 = 0$, $2\cos\theta + 1 = 0$ $\cos\theta = \frac{2}{3}$, $\cos\theta = -\frac{1}{2}$

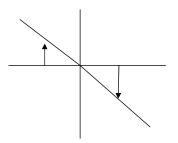
Acute angles ignoring -ve signs gives

$$\theta = \cos^{-1}\left(\frac{2}{3}\right) = 48.2, \quad \theta = \cos^{-1}\left(\frac{1}{2}\right) = 60^{\circ}$$

 $\theta = 48.2, 311.8, 120, 240^{\circ}$

(b) Acute angle ignoring -ve sign is

$$\theta = \tan^{-1}\sqrt{3} = 60^{\circ}$$



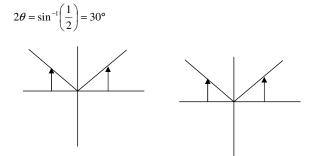
 $\theta = 120, 300^{\circ}$

(c)
$$\sin 2\theta = -\frac{1}{2}$$

Adjusted Range

 $\begin{array}{l} 0 \leq \theta \leq 360 \\ (\times 2) \quad 0 \leq 2\theta \leq 720^{\circ} \end{array}$

Acute angle ignoring the sign



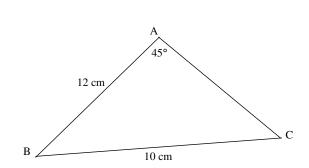
 $2\theta = 30, 150, 390, 510$ $\theta = 15, 75, 195, 255^{\circ}$

3. The triangle ABC is such that AB is 12 cm, BC is 10 cm and $C\hat{A}B = 45^{\circ}$.

- (a) Find the possible values of $B\hat{C}A$ and $A\hat{B}C$. [4]
- (b) Find the possible values of the area of the triangle ABC. [2]

Solution

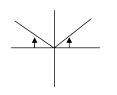
(a)

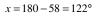


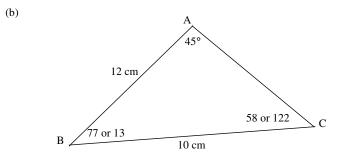
Two sides and two angles are involved therefore we use the Sine Rule

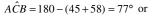
 $\frac{a}{SinA} = \frac{b}{SinB}$ $\frac{10}{\sin 45} = \frac{12}{\sin B\hat{C}A}$ $\sin B\hat{C}A = \frac{12 \times \sin 45}{10} = 0.84853$ $B\hat{C}A = \sin^{-1} 0.84853 = 58^{\circ}$

or for other angle possible









$$A\hat{C}B = 180 - (45 + 122) = 13^{\circ}$$

$$Area = \frac{1}{2} \times a \times b \times \sin C = \frac{1}{2} \times 12 \times 10 \times \sin 77^{\circ} = 58.5 \ cm^2 \ (1 \ d.p.) \ or$$

$$Area = \frac{1}{2} \times a \times b \times \sin C = \frac{1}{2} \times 12 \times 10 \times \sin 13^{\circ} = 13.5 \ cm^2 \ (1 \ d.p.)$$

4.	(a)	A geometric sere is has first term <i>a</i> and common ratio <i>r</i> . Write down the <i>n</i> th term of the series and prove that the sum of the first <i>n</i> terms is	We have an unknown power and therefore use logs!!!!
		given by $S_n = \frac{a(1-r^n)}{1-r}$ [4]	$\log 3^{n-1} > \log 1687500$ (n-1) log 3 > log 1687500
	(b)	The fourth term of a geometric series is 2 and the seventh term is 54.	$n-1 > \frac{\log 1687500}{\log 3}$
		(i) Find the common ratio of the series.	$n > \frac{\log 1687500}{\log 3} + 1$
		(ii) Find the sum of the first ten terms of the series, giving your answer correct to one decimal place.	n > 14.05 n = 15
		(iii) Find the least value of the <i>n</i> th term to exceed 125000. [10]	

Solution

(a) See proof in notes

(i) $T_4 = ar^3 = 2....[1]$ $T_7 = ar^6 = 54....[2]$ (b)

[2]÷[1] gives

$$\frac{ar^6}{ar^3} = \frac{54}{2} = 27$$
$$r^3 = 27$$
$$r = 3$$

(ii) As $ar^3 = 2$

$$a(3)^3 = 2$$
$$a = \frac{2}{27}$$

(iii) We need
$$ar^{n-1} > 125000$$
 with $a = \frac{2}{27} (1 - 3^{10})$
(iii) We need $ar^{n-1} > 125000$ with $a = \frac{2}{27}$ and $r = 3$

$$\frac{2}{27}(3)^{n-1} > 125000$$

(× 27 ÷ 2) $3^{n-1} > 1687500$

5. The sum of the first two terms of an arithemetic series is 3. The eighth terms of the arithmetic series is 47.

Find

- (a) the first term and the common difference of the series. [4]
- (b) the sum of the first twenty terms of the series. [2]

Solution

(a) $T_1 + T_2 = 3$

a + a + d = 32a + d = 3.....[1]

 $T_8 = a + 7d = 47....[2]$

Solving simultaneously we get

[1] - 2[2]

2a + d = 3- 2a + 14d = 94- 13d = -91d = 7

From [1] 2a + d = 32a + 7 = 3

2a = -4

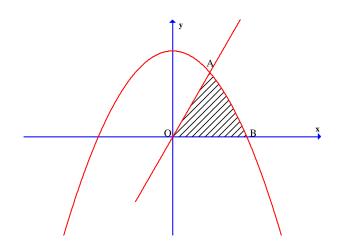
a = -2

$$S_{20} = \frac{20}{2} [2(-2) + 19(7)] = 1290$$

6. Integrate
$$5x^{\frac{1}{3}} + 3x^{-3}$$
 with respect to *x*.

Solution

$$\int 5x^{\frac{1}{3}} + 3x^{-3}dx = \frac{5x^{\frac{4}{3}}}{\frac{4}{3}} + \frac{3x^{-2}}{-2} + c = \frac{3}{4} \times 5x^{\frac{4}{3}} - \frac{3}{2x^2} + c$$
$$= \frac{15}{4}x^{\frac{4}{3}} - \frac{3}{2x^2} + c$$



The diagram shows the curve $y = 4 - x^2$ and the line y = 3x intersecting at the point A. The curve $y = 4 - x^2$ intersects the *x*-axis at B.

(a)	Find the coordinates of A and B, showing your working.	[5]

(b) Evaluate the area of the shaded region. [7]

Solution

(a) A and B can be found by

A- solving the two equations simultaneously

B-letting y = 0 and solving $y = 4 - x^2$ and taking the positive x value.

For A Point of intersection

 $4 - x^{2} = 3x$ $0 = x^{2} + 3x - 4$ 0 = (x + 4)(x - 1)x = -4, 1

So A is (1, 3) as y = 3x

$$0 = 4 - x^{2}$$

$$x^{2} = 4$$

$$x = \pm 2$$
So B is (2, 0)
(b) Area under line is $\int_{0}^{1} 3x dx = \left[\frac{3x^{2}}{2}\right]_{0}^{1} = \left(\frac{3}{2}\right) - (0) = \frac{3}{2}$
Area under curve is $\int_{1}^{2} 4 - x^{2} dx = \left[4x - \frac{x^{3}}{3}\right]_{1}^{2} = \left(8 - \frac{8}{3}\right) - \left(4 - \frac{1}{3}\right)$

$$= \frac{5}{3}$$
Shaded area is $\frac{3}{2} + \frac{5}{3} = 3\frac{1}{6}$ units²

8. (a) Find the radius and centre of the circle C given by

$$x^2 + y^2 - 8x + 4y + 11 = 0$$

(b) Given that the circle

$$x^2 + y^2 = a^2$$
 (a > 0)

touches C externally, find the value of *a*, giving your answer correct to two decimal places.

[3]

[4]

Solution

(a) Complete the square on the *x*'s and *y*'s

$$x^{2} - 8x + y^{2} + 4y + 11 = 0$$

(x - 4)² + (y + 2)² - 4 + 11 = 0
(x - 4)² + (y + 2)² = 9
centre=(4, -2) radius = 3

(b) As they touch externally distance between centres equals sum of radii!

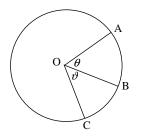
For $x^2 + y^2 = a^2$ the centre is (0, 0) and the radius is a.

Distance between centres is $\sqrt{(4-0)^2 + (-2-0)^2} = \sqrt{20}$

So $\sqrt{20} = 3 + a$ and squaring both sides gives

$$a = \sqrt{20 - 3} = 1.47$$
 (2 *d.p.*)

9.



The diagram shows a circle of centre O and radius 4 cm. The points A, B and C lie on the circle as shown. The angles θ and φ being measured in radians. The sum of the sector areas AOB and BOC is 15.2 cm^2 .

- (a) Show that $\theta + \vartheta = 1.9$ [2]
- (b) Given that the arc length AB is 3.2 cm greater than the arc length BC, find the values of θ and ϑ [4]

Solution

(a) Sum of sectors
$$= \frac{1}{2}r^2\phi + \frac{1}{2}r^2\theta = 15.2 \ cm^2$$

$$r = 4$$
 and so $\frac{1}{2}4^2\phi + \frac{1}{2}4^2\theta = 15.2 \ cm^2$

$$8\phi + 8\theta = 15.2$$

(÷8) $\phi + \theta = 1.9.....[1]$

(b) Arc length AB = 3.2 + Arc length BC

 $r\theta = 3.2 + r\phi$ $r = 4 \quad 4\theta = 3.2 + 4\phi$ $4\theta - 4\phi = 3.2$ $(\div 4) \quad \theta - \phi = 0.8.....[2]$

Now solving simultaneously [1] + [2]

$$2\theta = 2.7$$

 $\theta = 1.35$ and so

 $\theta - \phi = 0.8$ $1.35 - \phi = 0.8$ $\phi = 0.55$

10.	(a)	Given that $x > 0$, $y > 0$ show that	
		$\log_a (xy) = \log_a x + \log_a y$	[3]
	(b)	Given that $\int_{1}^{3} \log_{10} x dx$ has an approximate value of 0.5628,	
		find an approximate value for $\int_{1}^{3} \log_{10} x dx$. Given your answer	
		correct to four decimal places.	[4]
<u>Solut</u>	ion		
	(a)	See proof in notes	
	(b)	$\int_{1}^{3} \log_{10} 10x = \int_{1}^{3} \log_{10} 10dx + \int_{1}^{3} \log_{10} xdx \text{ using above rule}!!!!$	
		$= \int_{1}^{3} 1dx + 0.5628$ = $[x]_{1}^{3} + 0.5628$ = $(3) - (1) + 0.5628$	

 $= 2.5628 (4 \ d.p.)$