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1. Use the Trapezium Rule with six ordinates to find an approximate value for 

 the integral dx
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 Show your working and give your answer correct to four significant figures.
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  sum = 4.497046335 
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2. Find all values of θ  in the interval °≤≤° 3600 θ  satisfying 

 

 (a) θθθ 22 sin2coscos4 =−       [6] 

 

 (b) 3tan −=θ         [2] 

 

 (c) 
2

1
2sin =θ         [3] 

 

Solution 

 

 (a) θθθ 22 sin2coscos4 =−  and using θθ 22 cos1sin −=  we get 
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  Acute angles ignoring -ve signs gives 
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 °= 240,120,8.311,2.48θ  

 



(b) Acute angle ignoring -ve sign is 

 

 °== − 603tan 1θ  
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3. The triangle ABC is such that AB is 12 cm, BC is 10 cm and °= 45ˆBAC . 

 

 (a) Find the possible values of ACB ˆ  and CBA ˆ .    [4] 

 

 (b) Find the possible values of the area of the triangle ABC.  [2] 

 

Solution 
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 Two sides and two angles are involved therefore we use the Sine Rule 
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 or for other angle possible 
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4. (a) A geometric sereis has first term a and common ratio r.  Write down 

  the nth term of the series and prove that the sum of the first n terms is 

  given by 
r
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 (b) The fourth term of a geometric series is 2 and the seventh term is 54. 

 

  (i) Find the common ratio of the series. 

 

  (ii) Find the sum of the first ten terms of the series, giving your 

   answer correct to one decimal place.     

 

  (iii) Find the least value of the nth term to exceed 125000.         [10] 

 

 

Solution 

 

 (a) See proof in notes 
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   We have an unknown power and therefore use logs!!!! 
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5. The sum of the first two terms of an arithemetic series is 3.  The eighth terms 

 of the arithmetic series is 47. 

 

 Find 

 

 (a) the first term and the common difference of the series.  [4] 

 

 (b) the sum of the first twenty terms of the series.   [2] 

 

 

Solution 

 

 (a) 321 =+ TT  
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  Solving simultaneously we get 
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  From [1] 32 =+ da  
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6. Integrate 33

1

35 −+ xx with respect to x.    [2] 

 

Solution 
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7.  

 

x

y

B

A

O

 
 

 The diagram shows the curve 24 xy −=  and the line xy 3=  intersecting at 

 the point A.  The curve 24 xy −=  intersects the x-axis at B. 

 

 (a) Find the coordinates of A and B, showing your working.  [5] 

 

 (b) Evaluate the area of the shaded region.    [7] 

 

 

 

 

 Solution 

 

 (a) A and B can be found by 

 

  A- solving the two equations simultaneously 

 

  B-letting 0=y  and solving 24 xy −=  and taking the positive x value. 

 

  For A Point of intersection 
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  So A is )3,1(   as xy 3=  

 

 

  For B  
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  So B is (2, 0) 

 

 (b) Area under line is 
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−−








−=








−=−∫ 3

1
4

3

8
8

3
44

2

1

2

1

3
2 x

xdxx  

     
3

5
=  

 

  Shaded area is 2
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8. (a) Find the radius and centre of the circle C given by 

 

  0114822 =++−+ yxyx  

 

 (b) Given that the circle       [3] 

 

  )0(222 >=+ aayx  

 

  touches C externally, find the value of a, giving your answer 

  correct to two decimal places.      [4] 

 

Solution 

 

 (a) Complete the square on the x's and y's 
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 (b) As they touch externally distance between centres equals sum of radii! 

 

  For 222
ayx =+  the centre is (0, 0) and the radius is a. 

 

  Distance between centres is 20)02()04( 22 =−−+−  

 

  So a+= 320  and squaring both sides gives 
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 The diagram shows a circle of centre O and radius 4 cm.  The points A, B and 

 C lie on the circle as shown.  The angles θ  and ϕ  being measured in radians.  

 The sum of the sector areas AOB and BOC is 15.2 2cm . 

 

 (a) Show that 9.1=+ϑθ        [2] 

 

 (b) Given that the arc length AB is 3.2 cm greater than the  

  arc length BC, find the values of θ  and ϑ     [4] 

 

 

Solution 

 

 (a) Sum of sectors = 222 2.15
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 (b) Arc length AB = 3.2 +Arc length BC 
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  Now solving simultaneously [1] + [2] 
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  yxxy aaa loglog)(log +=       [3] 

 

 (b) Given that ∫
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10log xdx  has an approximate value of 0.5628,  

  find an approximate value for ∫
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  correct to four decimal places.     [4] 

 

Solution 

 

 (a) See proof in notes 
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