(a) Find all values of θ between 0° and 360° satisfying

$$
\begin{equation*}
5 \cos ^{2} \theta+2=3 \sin ^{2} \theta-2 \cos \theta \tag{6}
\end{equation*}
$$

(b) Find all value of x between 0° and 180° satisfying $\sin \left(2 x+12^{\circ}\right)=-0.53$

Solution

(a) Replace the squared trig function that does not have a non-squared trig function present! i.e. $\sin ^{2} \theta$ by $1-\cos ^{2} \theta$
$5 \cos ^{2} \theta+2=3\left(1-\cos ^{2} \theta\right)-2 \cos \theta$
$5 \cos ^{2} \theta+2=3-3 \cos ^{2} \theta-2 \cos \theta$ and moving all terms to the RHS
gives
$8 \cos ^{2} \theta+2 \cos \theta-1=0$ and factorising gives
$(4 \cos \theta-1)(2 \cos \theta+1)=0$ and so
either $4 \cos \theta-1=0$ or $2 \cos \theta+1=0$
and so $\cos \theta=\frac{1}{4}, \cos \theta=-\frac{1}{2}$

Acute angle ignoring sign are
$\theta=\cos ^{-1} \frac{1}{4}=75.5^{\circ} \quad \theta=\cos ^{-1} \frac{1}{2}=60^{\circ}$
And taking account of the signs give

$\theta=75.5,284.5^{\circ}$

$\theta=104.5,255.5^{\circ}$
(b) Adjusted range
$0^{\circ} \leq x \leq 180^{\circ}$
$(\times 2) \quad 0^{\circ} \leq 2 x \leq 360^{\circ}$
$(+12) 12^{\circ} \leq 2 x+12 \leq 372^{\circ}$

Acute angle ignoring the sign is

$$
\begin{array}{ll}
2 x+12^{\circ}=212^{\circ}, & 2 x+12^{\circ}=328^{\circ} \\
2 x=200, & 2 x=316 \\
x=100^{\circ}, \quad x=158^{\circ} &
\end{array}
$$

(both within the range) Check for others!!
3. The triangle ABC is such that $\mathrm{AB}=16 \mathrm{~cm}, \mathrm{AC}=9 \mathrm{~cm}$ and $A \hat{B} C=23^{\circ}$.
(a) Find the possible values of $A \hat{C} B$. Give you answers correct to the nearest degree.
(b) Given that $B \hat{A} C$ is an acute angle, find
(i) the size of $B \hat{A} C$, giving your answer correct to the nearest degree,
(ii) the area of the triangle ABC , giving your answer correct to one decimal place.

Solution

(a) Using the Sine Rule we get

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B} \\
& \frac{9}{\sin 23}=\frac{16}{\sin A \hat{C} B} \\
& \sin A \hat{C} B=\frac{\sin 23 \times 16}{9} \\
& \quad=0.6946
\end{aligned}
$$

Acute angle $A \hat{C} B=\sin ^{-1} 0.6946=44$ to nearest deg ree

$A \hat{C} B=44,136^{\circ}$
(b) If this angle is acute it is 44°

(i) Using the fact that angles in a triangle add up to 180 degrees we can clearly see that $B \hat{A} C=180-23-44=113^{\circ}$
(ii) Area $=\frac{1}{2} a b \sin C=\frac{1}{2} \times 16 \times 9 \times \sin 113=66.3 \mathrm{~cm}^{2}$
4. (a) An arithmetic series has first term a and common difference d. Prove at the sum of the first n terms of the series is given by
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
(b) The eighth term of an arithmetic series is 46 . The sum of the first nine terms of the series is 225 . Find the first term and the common difference the the series.
(c) Find an expression, in terms of n, for the sum of the first n terms of the arithmetic series $3+7+11+11+15+$

Simplify your answer.
Solution
(a) See notes for proof
(b) $T_{8}=a+7 d=46 \ldots . .[1]$
$S_{9}=\frac{9}{2}[2 a+8 d]=225$
$4.5[2 a+8 d]=225$
$(\div 4.5) \quad 2 a+8 d=50$
$(\div 2) a+4 d=25 \ldots \ldots . .[2]$

Solving [1] and [2] simultaneously

$$
\begin{aligned}
a+7 d & =46 \\
-a+4 d & =25 \\
3 d & =21 \\
d & =7
\end{aligned}
$$

Now as $d=7$ and using [1]

$$
a+7(7)=46
$$

$$
a=-3
$$

$$
\text { (b) } \quad a=3, d=T_{n}-T_{n-1}=7-3=4
$$

$$
\begin{aligned}
S_{n} & =\frac{n}{2}[2 a+(n-1) d] \\
& =\frac{n}{2}[2(3)+(n-1) 4] \\
& =\frac{n}{2}[6+4 n-4] \\
& =\frac{n}{2}[4 n+2] \\
& =n[2 n+1]
\end{aligned}
$$

5. (a) The ninth and tenth terms of a geometric series are 36 and 108 respectively. Find the seventh term of the series.
(b) Another geometric series has first term a and common ratio r. The second term of this geometric series is 9 and the sum to infinity of the series is 48 .
(i) Show that r satisfies the equation $16 r^{2}-16 r+3=0$
(ii) Find the two possible values for r and the corresponding values for a.

Solution
(a) $T_{9}=a r^{8}=36 \ldots . .[1]$
$T_{10}=a r^{9}=108 \ldots .[2]$
We could solve simultaneously by dividing but as they are consecutive terms we can just divide the second by the first to get $r!!!!$
i.e. $r=\frac{108}{36}=3$

To get term 7 we divide term 8 by the common ratio! i.e. 3
$T_{7}=\frac{36}{3}=12$
(b) $\quad T_{2}=a r=9 \ldots \ldots . . a=\frac{9}{r} \ldots .[1]$
$S_{\infty}=\frac{a}{1-r}=48 . \ldots \ldots . . a=48(1-r) \ldots . .[2]$
Solving [1] and [2] simultaneously
$\frac{9}{r}=48(1-r)$
$9=48 r(1-r)$
$9=48 r-48 r^{2}$
$(\div 3) 3=16 r-16 r^{2}$
and moving to the LHS gives
$16 r^{2}-16 r+3=0$
Factorising we get
$(4 r-3)(4 r-1)=0$
either $4 r-3=0$ or $4 r-1=0$
$r=\frac{3}{4}$ or $\frac{1}{4}$
Using $a=\frac{9}{r} \ldots .[1]$
If $r=\frac{3}{4}, a=\frac{9}{\frac{3}{4}}=9 \times \frac{4}{3}=12$
$r=\frac{1}{4}, a=\frac{9}{\frac{1}{4}}=4 \times 9=36$
6.
(a) Find $\int\left(\frac{5}{x^{3}}-3 x^{\frac{1}{4}}\right) d x$
(b)

The diagram shows a sketch of the curve $y=6+4 x-x^{2}$ and the line $y=x+2$. The point of intersection of the curve and the line in the first quadrant is denoted by A .
(i) Find the coordinates of A.
(ii) Find the area of the shaded region.

Solution
(a) $\int\left(\frac{5}{x^{3}}-3 x^{\frac{1}{4}}\right) d x=\int\left(5 x^{-3}-3 x^{\frac{1}{4}}\right) d x=\frac{5 x^{-2}}{-2}-\frac{3 x^{\frac{5}{4}}}{\frac{5}{4}}$

$$
=-\frac{5}{2 x^{2}}-\frac{4}{5} \times 3 x^{\frac{5}{4}}=-\frac{5}{2 x^{2}}-\frac{12}{5} x^{\frac{5}{4}}+c
$$

(b) (i) The coordinates of A is one of the points on intersection. Need to solve the two equations simultaneously
$6+4 x-x^{2}=x+2$
$0=x^{2}-3 x-4$
$0=(x-4)(x+1)$
$x=-1,4$

Therefore as $y=x+2$
A is $(4,6)$
(ii) The area under the curve is
$\int_{0}^{4}\left(6+4 x-x^{2}\right) d x=\left[6 x+2 x^{2}-\frac{x^{3}}{3}\right]_{0}^{4}\left(24+32-\frac{64}{3}\right)-(0)=\frac{104}{3}=34 \frac{2}{3}$
The area under the line is $\int_{0}^{4}(x+2) d x=\left[\frac{x^{2}}{2}+2 x\right]_{0}^{4}=(8+8)-(0)=16$
Therefore the shaded area $=$ curve $-\operatorname{line}=34 \frac{2}{3}-16=18 \frac{2}{3}$ units 2
7. (a) Given that $x>0, y>0$, show that
$\log _{a} \frac{x}{y}=\log _{a} x-\log _{a} y$
(b) Solve the equation
$3^{5-2 x}=7$
Show your working and give your answer correct to three decimal places.
(c) Solve the equation
$\log _{a}(x-3)+\log _{a}(x+3)=2 \log _{a}(x-2)$
Solution
(a) See proof in notes
(b) $3^{5-2 x}=7$ and taking logs
$\log _{a} 3^{5-2 x}=\log _{a} 7$
$(5-2 x) \log _{a} 3=\log _{a} 7$
$5-2 x=\frac{\log _{a} 7}{\log _{a} 3}$
$5-2 x=1.771244$
$-2 x=-3.22876$
$x=1.614$ (3 d.p.)
(c) $\quad \log _{a}(x-3)+\log _{a}(x+3)=2 \log _{a}(x-2)$
$\log _{a}(x-3)+\log _{a}(x+3)=\log _{a}(x-2)^{2}$
$\log _{a}(x-3)(x+3)=\log _{a}(x-2)^{2}$
By comparing we get
$(x-3)(x+3)=(x-2)^{2}$
$x^{2}-9=x^{2}-4 x+4$
$4 x=13$
$x=\frac{13}{4}$
8. The circle C_{1} has centre A and equation

$$
\begin{equation*}
x^{2}+y^{2}-6 x+2 y-15=0 \tag{3}
\end{equation*}
$$

(a) Find the coordinates of A and the radius of C_{1}
(b) The point P has coordinates $(7,2)$ and lies on C_{1}. Find the equation of the tangent to C_{1} at P .
(c) The circle C_{2} has centre $\mathrm{B}(11,14)$ and radius 8. A point Q lies on C_{1} and a point R lies on C_{2}. Find the shortest possible length of the line QR .
[3]

Solution

(a) $x^{2}+y^{2}-6 x+2 y-15=0$ and rearranging gives
$x^{2}-6 x+y^{2}+2 y-15=0$ and completing the square gives
$(x-3)^{2}-9+(y+1)^{2}-1-15=0$
$(x-3)^{2}+(y+1)^{2}=25$

Therefore centre is $(3,-1)$ and the radius is 5
(b)

First of all we need the gradient of the tangent. We work out the gradient of the radius (shown) and the gradient of the tangent is -1 over this!
gradient of radius $=\frac{7-3}{2--1}=\frac{4}{3}$

Therefore the gradient of the tangent is $\frac{-1}{\frac{4}{3}}=-\frac{3}{4}$
and so the equation of the tangent is

$$
\begin{aligned}
& y-2=-\frac{3}{4}(x-7) \\
& (\times 4) 4(y-2)=-3(x-7) \\
& 4 y-8=-3 x+21 \\
& 3 x+4 y=29
\end{aligned}
$$

(c)

The shortest length of the line QR is given by the distance between the centres minus each of the radii!!!.

Distance between centres $=\sqrt{(11-3)^{2}+(14--1)^{2}}=17$
Therefore the shortest distance is $17-5-8=4$
9.

The diagram shows the four points $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S on a circle with centre O and radius 13 cm . The line QS is a diameter of the circle, $P \hat{O} Q=\theta$ radians and $Q \hat{O} R=\phi$ radians.
(a) The area of the sector POQ is $60 \mathrm{~cm}^{2}$. Find the value of θ, giving your answer correct to two decimal places.
(b) The length of the arc QR is 7 cm greater than the length of the arc PS. Find the value of ϕ, giving your answer correct to two decimal places.

Solution

(a) Area of Sector $=\frac{1}{2} r^{2} \theta=60$ and as $r=13$
$\frac{1}{2} \times 13^{2} \theta=60$
$\theta=\frac{60}{84.5}=0.71^{c}$
(b) \quad Arc $\mathrm{QR}=r \phi=13 \phi$

Arc RS $=r(\pi-\phi)=13(\pi-\phi)$
Given that Length of Arc QR $=7$ + Length of Arc RS
$13 \phi=7+13(\pi-\phi)$
$13 \phi=7+13 \pi-13 \phi$
$26 \phi=7+13 \pi$
$\phi=\frac{7+13 \pi}{26}$
$\phi=1.84^{c}$

