Answers to examination-style questions

Answers					Marks Examiner's tips		
1	(a)		$C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$ fermentation	1 1	Learn the equation of fermentation and remember there is no oxygen there. The yeast respires anaerobically.		
	(b)		$C_2H_5OH + 3O_2 \rightarrow 2CO_2 + 3H_2O$ CO or carbon monoxide or C or carbon	1 1			
2	(a)	(i)	potassium (or sodium) dichromate(VI) or <u>correct</u> formula or potassium manganate(VII)	1	If you give a contradiction of name and formula you lose the mark. Also if you give the name, you must give the correct		
			H ₂ SO ₄ / HCl* / H ₃ PO ₄ / HNO ₃	1	name including the oxidation state. Acidified is accepted. *If you put $KMnO_4$ in the last part of the question you cannot have HCl here.		
			oxidation or redox	1	question you cannot have their here.		
	(b)	(i)	CH ₃ CH ₂ C=O H	1	The structure must clearly be an aldehyde showing the C=O		
		(ii)	Reagents can be: Tollens' reagent <i>or</i> Fehling's/ Benedict's reagent <i>or</i> <u>acidified</u> potassium dichromate <i>or</i> ammoniacal silver nitrate <i>or</i> AgNO ₃ + NH ₃	1	AgNO ₃ on its own will not score. Also potassium dichromate must show that it is acidified.		
			<i>with propanone:</i> stays colourless with Tollens' reagent, stays blue with Fehling's/Benedict's solution, stays orange with potassium dichromate in acid solution	1	If your reagent is correct then you can also have no change for the observation here for propanone.		
			<i>with propanal:</i> there is a reaction. Depending on your reagent the following happens: Tollens' reagent gives silver mirror	1			
			Fehling's/Benedict's reagent gives a red / brown / orange precipitate / solid				
			<u>acidified</u> potassium dichromate goes green				
3	(a)	equ	eous <i>or</i> solution in water <i>or</i> (aq) in the ation st <i>or</i> zymase	1 1	Don't just say 'an enzyme'.		

AQA Chemistry AS

2

Answers to examination-style questions

Ans	wers	Marks	Examiner's tips	
	anaerobic / absence of oxygen / absence of air <i>or</i> neutral pH <i>T</i> in the range 30–40 °C only fermentation $C_6H_{12}O_6 \rightarrow 2CH_3CH_2OH + 2CO_2$ $CH_3CH_2OH + 3O_2 \rightarrow 2CO_2 + 3H_2O$	1 1 1 1 1	Learn these 4 points. You can use C_2H_5OH but you should not use C_2H_6O .	
(b)	dehydration is the <u>elimination</u> of water <i>or</i> removal of <u>combined</u> water from a compound / molecule catalyst = concentrated H_2SO_4 <i>or</i> concentrated phosphoric acid <i>or</i> aluminium oxide $CH_3CH_2OH \rightarrow H_2C=CH_2 + H_2O$	1 1 1	Don't say from a 'substance'. You can use C_2H_5OH but you should not use C_2H_6O . Also CH_2CH_2 is not given credit.	
4 (a)	 (i) compounds with the same molecular formula but different structural formulae / different structures (ii) C₃H₆O only (iii) CH₂ only 	1 1 1 1	This is a definition so should be learnt.	
(b)	potassium dichromate(VI) / $K_2Cr_2O_7$ and acid / acidified / H_2SO_4 / H^+ remains orange <i>or</i> no change <i>or</i> no reaction orange to green	1 n 1 1	You can also have $KMnO_4 / H_2SO_4$, but not HCl. Or remain purple if $KMnO_4$ used. Or goes from purple to colourless if $KMnO_4$ in acid used or gives brown precipitate or goes green if $KMnO_4$ neutral or in alkali.	
$\langle \rangle$	ale aire a fragmenta			

1

(c) <u>choice of reagents</u>

potassium dichromate(VI) / K ₂ Cr ₂ O ₇ and acid / acidified / H ₂ SO ₄ / H ⁺ <i>or</i> KMnO ₄ / H ₂ SO ₄	Fehling's / Benedict's reagent	Tollens' reagent or AgNO ₃ / NH ₃ or ammoniacal silver nitrate Not AgNO ₃ alone.
--	--------------------------------------	---

AQA Chemistry AS Level © Nelson Thornes Ltd 2008

AQA Chemistry

Answers to examination-style questions

Ans	Answers with the aldehyde C			Marks	Examiner's tips
				1	
	goes orange to green	red solid	silver mirror		
	goes purple to colourless / brown ppt. / green solution if KMnO ₄ used red solid				
	Potassium dichromate is more usual to do in school.				
	with the ketor	ne D		1	
	remains orange or no change or no reaction or purple for KMnO ₄	remains blue or no change or no reaction	remains colourless <i>or</i> no change <i>or</i> no reaction		These tests always come up, so learn the tests to distinguish aldehydes and ketones. If you can't learn them all pick one to really learn.
(d		ns yellow / oran	ge	1	This is the test for unsaturation.
	-	or no reaction es <u>colourless</u> or	• decolourised	1	Don't say goes clear! If both observations are the same then you will get no credit for either.
5 (a		CH ₂ CH ₂ CH ₂ CH ₂ OH CH ₂ CH ₂ CHO +		2	You can write $C_4H_9CH_2OH$ but the product must show the aldehyde group CHO, e.g. C_4H_9CHO
		CH ₂ CH(OH)CH CH ₂ COCH ₃ + H		2	You could use $C_3H_7C(OH)CH_3$ but the product must show CO in the ketone, e.g. $C_3H_7COCH_3$
(b	conditions:	ng's/Benedict's ent or potassiun	n dichromate	1	Aldehyde and ketone distinguishing tests again.

if Fehling's/Benedict's reagent - boil, heat, warm

if Tollen's reagent - ammoniacal silver nitrate

if potassium dichromate - in acid

with aldehyde product from (a)(i): if Fehling's/Benedict's reagent used, get orange or brown or red precipitate if Tollens' reagent used, get silver mirror if potassium dichromate used, solution goes green

1

1

Answers to examination-style questions

Answers	Marks	Examiner's tips
with ketone product in (b)(ii): if Fehling's/Benedict's reagent used, get no precipitate / no reaction if Tollens' reagent used, get no silver mirror no reaction if potassium dichromate used, get no reaction		Do not say 'nothing'.
6 (a) (i) $CH_3CH_2CH_2CH_2CHO + [O] \rightarrow CH_3CH_2CH_2CH_2COOH$ (ii) pentanoic acid (b) (i) $CH_3CH_2CH_2CH_2CH_2OH or$	1 1	<i>Hint:</i> In this case you can put C_4H_9CHO going to C_4H_9COOH
(ii) CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ OH <i>or</i> pentan–1–ol (ii) primary	1 1	You will be given credit for the abbreviation 1° or 1^{y}
7 (a) % O = 21.6 % C $\frac{64.9}{12}$ H $\frac{13.5}{1}$ O $\frac{21.6}{16}$	1 1	If you do not calculate % O you cannot really carry on!
 ratio: 4 : 10 : 1 (∴ C₄H₁₀O) (b) (i) <i>type of alcohol:</i> tertiary reason: no hydrogen atom on central carbon (ii) OH CH. 	1 1 1	These are always the same method so you should always get them right.
(ii) OH CH_3 $CH_3 - \overset{ }{C} - CH_2CH_3$ $CH_3 - \overset{ }{C} - CH_2OH$ H H H <i>Isomer 3 Isomer 4</i>	2	Always put in all the H's.
 (c) (i) aldehyde (ii) CH₃CH₂CH₂CH₂CH₂OH + [O] → CH₃CH₂CH₂CHO + H₂O (iii) name: butanoic acid structure: CH₃CH₂CH₂COOH 	1 2 1 1	$C_4H_{10}O$ is OK as a reactant but C_3H_7CHO is not accepted for product.
 (d) advantage: fast reaction / pure product/ continuous process / cheap / high yield, 100% alcohol disadvantage: high technology / ethene from non-renewable source / expensive equipment 	1 1	You cannot just have 'costly'.
8 (a) CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ OH CH ₃ CH(OH)CH ₂ CH ₃	1 1	
(b) correct structures drawn for butanal, butanone and butanoic acid	3	You must show the CHO, C=O and COOH groups.

Answers to examination-style questions

Ansv	wers	Marks	Examiner's tips	
	<i>or</i> the reaction of butan-1-ol with [O] to produce butanal and water balanced equation for the reaction of butan-1-ol with [O] to produce butanoic acid and water <i>or</i> balanced equation for the reaction of butanal with [O] to produce butanoic acid balanced equation for the reaction of butan-2-ol with [O] to produce butanone and water	1 1 1		
(c)	correct structure drawn for 2-methylpropan- 2-ol	1		
	name: 2-methylpropan-2-ol	1	You must show the alcohol as –O–H. If you put C–H–O, then it looks like an aldehyde and will be marked wrong	
9 (a)	compounds with the same molecular formula but different structures due to different positions of the same functional group on the same carbon skeleton / chain	1 1	Another definition to learn!	
(b)	compound A is butan-1-ol only compound C is a ketone	1 1		
(c)	 (i) oxidation <i>or</i> redox (ii) K₂Cr₂O₇ <i>or</i> potassium dichromate(VI) acidified <i>or</i> H₂SO₄ (iii) heat under reflux 	1 1 1 1	If you write the 'dichromate ion' it will be marked wrong. A reagent must come out of a bottle. You must state the acid not just put H ⁺	
	 (iv) correctly drawn structure of 2-methylpropan-2-ol (v) correctly drawn structure of methanoic acid 	1	Use clearly drawn C–C and C–O bonds. You must have C–O and C=O displayed.	
(d	 (i) Tollens' reagent or ammoniacal silver nitrate or Fehling's/Benedict's reagent or acidified potassium dichromate(VI) (ii) correctly drawn structure of methylpropanal 	1 1	You must have C–O and C=O displayed.	

Answers to examination-style questions

Answers Marks Examiner's tips	
-------------------------------	--

10 (a) (i)

Isomer	Name	
CH ₃ CH ₂ CH ₂ CH ₂ OH	butan-1-ol	1
CH_3		
$CH_3 - CH_3 - $	2-methylpropan-2-ol	1
ÓН		
CH ₃ -CH-CH ₂ OH H ₃	(2-)methylpropan-1-ol	1
CH ₃		
CH ₂ CH ₂ -CH-CH ₂	butan-2-ol	1
CH ₃ CH ₂ -CH-CH ₃ OH		-
(b) (i) 2-methylprop		1
(ii) dehydrating c conc. H ₃ PO ₄	<i>agent:</i> conc. H_2SO_4 or or Al_2O_3	1
equation:		
*	СН	
$CH_2 - C - CH_2 \longrightarrow$	$\underline{\overset{CH_{3}}{\overset{I}{}}_{CH_{3}-C=CH_{2}+H_{2}O}}$	1
OH OH		•
-		
(c) (i) <i>isomer:</i> butar		1
structure of the		1
$CH_3 CH_2(-) C$	$(-)CH_3$	•
(ii) isomer: butar	≤ n-1-ol	
or 2-methylp	ropan-1-ol	1
structure of the	he aldehyde:	
_	0	
<i>either</i> CH ₃	$CH_2 CH_2 (-)C$	

or
$$CH_3-CH(-)C$$

`H

1

 C_4H_9OH in equation is allowed provided RHS is correct.

Answers to examination-style questions

Answers				Marks	Examiner's tips
(ii	ii) Choice of r Reagent	eagent again Tollens' (AgNO ₃ /NH ₃)	Fehling's /Benedict's	1	
	Observation with ketone	stays colourless	stays blue	1	
	Observation with aldehyde	silver mirror black ppt	<u>red solid</u> orange / <u>red</u> brown / <u>red</u> ppt / solid	1	
	<i>quation:</i> CH ₃ C H ₃ CH ₂ CH ₂ CC	$CH_2CH_2CH_2OH$ OOH + H_2O	$+ 2[O] \rightarrow$	1	You can put C_4H_9OH here and C_3H_7COOH
пс	ume of produc	t: butanoic acid		1	
de (b) (i)	rmentation hydration <i>or</i> () yeast / zym	ase		1 1 1	
(c) (i)	<i>or</i> phosphoprimary <i>or</i>sugar or glurenewable	1° ucose or ethano does not contain		1 1 1	This is not aqueous or dilute acid.
(d) C	or ethanol j	produces less po or less CO / C	ollution <i>or</i> is	; 1	This type of answer is really common sense.
12 a fuel made from plants or organic matter C in the sugar plant initially so when fuel is burnt the same amount of C burns				1	
 to give CO₂ which is reabsorbed by sugar plants etc. ethanol produced in this way is a renewable resource, sugar – this conserves valuable 			newable uable	2	
		he alternative m rom ethene and		2	

Nelson Thornes is responsible for the solution(s) given and they may not constitute the only possible solution(s).