1. (a) Either $y=2$ or $(0,2)$
(b) When $x=2, y=(8-10+2) \mathrm{e}^{-2}=0 \mathrm{e}^{-2}=0$
$\left(2 x^{2}-5 x+2\right)=0 \Rightarrow(x-2)(2 x-1)=0$
Either $x=2$ (for possibly B1 above) or $x=\frac{1}{2}$.

Note

If the candidate believes that $\mathrm{e}^{-x}=0$ solves to $x=0$ or gives an extra solution of $x=0$, then withhold the final accuracy mark.
(c) $\frac{\mathrm{d} y}{\mathrm{~d} x}=(4 x-5) \mathrm{e}^{-x}-\left(2 x^{2}-5 x+2\right) \mathrm{e}^{-x}$

Note

M1: (their $\left.u^{\prime}\right) \mathrm{e}^{-x}+\left(2 x^{2}-5 x+2\right)\left(\right.$ their $\left.v^{\prime}\right)$
A1: Any one term correct.
A1: Both terms correct.
(d) $\quad(4 x-5) \mathrm{e}^{-x}-\left(2 x^{2}-5 x+2\right) \mathrm{e}^{-x}=0$
$2 x^{2}-9 x+7=0 \Rightarrow(2 x-7)(x-1)=0$
$x=\frac{7}{2}, 1$ A1

When $x=\frac{7}{2}, y=9 \mathrm{e}^{-\frac{7}{2}}$, when $x=1, y=-\mathrm{e}^{-1}$

Note

$1^{\text {st }} \mathrm{M} 1$: For setting their $\frac{\mathrm{dy}}{\mathrm{d} x}$ found in part (c) equal to 0 .
$2^{\text {nd }} \mathrm{M} 1$: Factorise or eliminate out e^{-x} correctly and an attempt to factorise a 3-term quadratic or apply the formula to candidate's $\mathrm{ax}^{2}+\mathrm{b} x+\mathrm{c}$.
See rules for solving a three term quadratic equation on page 1 of this Appendix.
$3^{\text {rd }}$ ddM1: An attempt to use at least one x-coordinate on $y=\left(2 x^{2}-5 x+2\right) \mathrm{e}^{-x}$.
Note that this method mark is dependent on the award of the two previous method marks in this part.
Some candidates write down corresponding y-coordinates without any working. It may be necessary on some occasions to use your calculator to check that at least one of the two y-coordinates found is correct to awrt 2 sf.
Final A1: Both $\{x=1\}, y=-\mathrm{e}^{-1}$ and $\left\{x=\frac{7}{2}\right\}, y=9 e^{-\frac{7}{2}}$. cao
Note that both exact values of y are required.
2. (a) $\frac{(x+5)(2 x-1)}{(x+5)(x-3)}=\frac{(2 x-1)}{(x-3)}$

Note

M1: An attempt to factorise the numerator.
B1: Correct factorisation of denominator to give $(x+5)(x-3)$.
Can be seen anywhere.
(b) $\quad \ln \left(\frac{2 x^{2}+9 x-5}{x^{2}+2 x-15}\right)=1$ M1
$\frac{2 x^{2}+9 x-5}{x^{2}+2 x-15}=\mathrm{e}$
$\frac{2 x-1}{x-3}=\mathrm{e} \Rightarrow \quad 3 \mathrm{e}-1=x(\mathrm{e}-2)$ M1
$\Rightarrow x=\frac{3 \mathrm{e}-1}{\mathrm{e}-2}$
A1 aef cso
4

Note

M1: Uses a correct law of logarithms to combine at least two terms.
This usually is achieved by the subtraction law of logarithms to give
$\ln \left(\frac{2 x^{2}+9 x-5}{x^{2}+2 x-15}\right)=1$
The product law of logarithms can be used to achieve
$\ln \left(2 x^{2}+9 x-5\right)=\ln \left(e\left(x^{2}+2 x-15\right)\right)$.
The product and quotient law could also be used to achieve
In $\left(\frac{2 x^{2}+9 x-5}{e\left(x^{2}+2 x-15\right)}\right)=0$
dM1: Removing ln's correctly by the realisation that the anti-ln of 1 is e.
Note that this mark is dependent on the previous method mark being awarded.
M1: Collect x terms together and factorise.
Note that this is not a dependent method mark.
A1: $\frac{3 e-1}{e-2}$ or $\frac{3 e^{1}-1}{e^{1}-2}$ or $\frac{1-3 e}{2-e}$. aef
Note that the answer needs to be in terms of e. The decimal answer is 9.9610559...

Note that the solution must be correct in order for you to award this final accuracy mark.
3. (i) (a) $\ln (3 x-7)=5$

$$
\mathrm{e}^{\ln (3 x-7)}=\mathrm{e}^{5}
$$

Takes e of both sides of the equation.
This can be implied by

$$
3 x-7=\mathrm{e}^{5} . \quad \text { M1 }
$$

Then rearranges to make x the subject. dM1

$$
\begin{aligned}
& 3 x-7=\mathrm{e}^{5} \Rightarrow \\
& x=\frac{e^{5}+7}{3}\{=51.804 \ldots\}
\end{aligned}
$$

Exact answer of $\frac{e^{5}+7}{3}$.
A1 3
(b) $\quad 3^{x} \mathrm{e}^{7 x+2}=15$
$\ln \left(3^{x} e^{7 x+2}\right)=\ln 15$
$\ln 3^{x}+\ln \mathrm{e}^{7 x+2}=\ln 15$
Applies the addition law of logarithms.
$x \ln 3+7 x+2=\ln 15$
$x \ln 3+7 x+2=\ln 15$
$x(\ln 3+7)=-2+\ln 15$
Factorising out at least two x terms on one side and collecting number terms on the other side.
Takes \ln (or logs) of both sides of the equation.

M1 ddM1
A1 oe正

$$
x=\frac{-2+\ln 15}{7+\ln 3}\{=0.0874 \ldots\}
$$

Exact answer of

$$
\frac{-2+\ln 15}{7+\ln 3} \quad \text { A1 oе } \quad 5
$$

(ii) (a) $\mathrm{f}(x)=\mathrm{e}^{2 x}+3, x \in$

$$
y=\mathrm{e}^{2 x}+3 \Rightarrow \mathrm{y}-3=\mathrm{e}^{2 x}
$$

$$
\Rightarrow \ln (y-3)=2 x
$$

$\Rightarrow \frac{1}{2} \ln y-3=x$

Hence $\mathrm{f}^{-1}(x)=\underline{\frac{1}{2} \ln (x-3)}$

$$
\text { and takes } \ln \text { of both sides M1 }
$$

$$
\frac{1}{2} \ln (x-3) \text { or } \ln \sqrt{(x-3)}
$$

$$
\text { or } \frac{\mathrm{f}^{-1}(x)=\frac{1}{2} \ln (y-3)}{\text { (see appendix) }} \quad \underline{\text { A1 }} \text { cao }
$$

$\mathrm{f}^{-1}(x)$: Domain: $\underline{x>3}$ or $(3, \infty)$

Either $\underline{x>3}$ or $(3, \infty)$ or Domain > 3 .

B1
(b) $\mathrm{g}(x)=\ln (x-1), x \in \square$, $x>1$
$\operatorname{fg}(x)=\mathrm{e}^{2 \ln (x-1)}+3$
$\left\{=(x-1)^{2}+3\right\}$
An attempt to put function g into function f . M1
$\mathrm{e}^{2 \ln (x-1)}+3$ or $(x-1)^{2}+3$ or $x^{2}-2 x+4$. A1 isw
$\operatorname{fg}(x)$: Range: $y>3$
or $(3, \infty)$
Either $y>3$ or $(3, \infty)$ or Range >3 or $\underline{f g}(x)>3$.

B1 3
[15]
4. (a) $P=80 e^{\frac{t}{5}}$

$$
t=0 \Rightarrow P=80 \mathrm{e}^{\frac{o}{5}}=80(1)=\underline{80}
$$

(b) $\mathrm{P}=1000 \Rightarrow 1000=80 \mathrm{e}^{\frac{t}{5}} \Rightarrow \frac{1000}{80}=\mathrm{e}^{\frac{\mathrm{t}}{5}}$ Substitutes $P=1000$ and rearranges equation to make $\mathrm{e}^{\frac{t}{5}}$ the subject. M1
$\therefore t=5 \ln \left(\frac{1000}{80}\right)$
$t=12.6286 \ldots$
awrt 12.6 or 13 years
Note $t=12$

$$
\text { or } t=\text { awrt } 12.6 \Rightarrow t=12
$$

will score A0
(c) $\frac{\mathrm{d} P}{\mathrm{~d} t}=16 \mathrm{e}^{\frac{t}{5}}$
$\begin{array}{lll}k \mathrm{e}^{\frac{t}{5}} \text { and } k \neq 80 . & \text { M1 } & \\ 16 \mathrm{e}^{\frac{1}{5} t} & \text { A1 } & 2\end{array}$
(d) $50=16 \mathrm{e}^{\frac{t}{5}}$

$$
\begin{array}{lr}
\therefore t=5 \ln \left(\frac{50}{16}\right) \quad\{5.69717 \ldots\} & \text { Using } 50=\frac{\mathrm{dP}}{\mathrm{dt}} \text { and } \\
\text { an attempt to solve } & \text { M1 } \\
& \text { to find the value of } \mathrm{t} \text { or } \frac{t}{5}
\end{array}
$$

$\begin{array}{lrl}P=80 \mathrm{e}^{\frac{1}{5}\left(5 \ln \left(\frac{50}{16}\right)\right)} \text { or } P=80 \mathrm{e}^{\frac{1}{5}(5.69717 \ldots)} & \begin{array}{r}\text { Substitutes their value } \\ \text { of } t \text { back into the equation for } P .\end{array} & \mathrm{dM} 1 \\ P=\frac{80(50)}{16}=\underline{250} & \underline{250} \text { or awrt } 250 & \text { A1 }\end{array}$
5. (a)

Curve retains shape
when $x>\frac{1}{2} \ln k$
Curve reflects through the x-axis
when $x>\frac{1}{2} \ln k$
($0, k-1$) and $\left(\frac{1}{2} \ln k, 0\right)$ marked
in the correct positions.
(b)

Correct shape of curve. The curve
should be contained in quadrants 1, 2 and 3
(Ignore asymptote)
$(1-k, 0)$ and $\left(0, \frac{1}{2} \ln k\right)$
(c) Range of $\mathrm{f}: \underline{\mathrm{f}(x)>-k}$ or $y>-k$ or $(-k, \infty)$

Either $\underline{f(x)>-k}$
or $y>-k$ or
$(-k, \infty)$ or $\underline{f}>-k$ or
B1 1
(d) $y=\mathrm{e}^{2 x}-k \Rightarrow y+k=\mathrm{e}^{2 x}$

Attempt to make x
$\Rightarrow \ln (y+k)=2 x$
(or swapped y) the subject
M1
$\Rightarrow \frac{1}{2} \ln (y+k)=x$
Makes $\mathrm{e}^{2 x}$ the subject and M1 takes \ln of both sides

Hence $\mathrm{f}^{-1}(x)=\underline{\frac{1}{2} \ln (x+k)}$
$\underline{\frac{1}{2} \ln (x+k)}$ or $\underline{\ln \sqrt{(x+k)} \quad \text { A1 cao }}$
(e) $\mathrm{f}^{-1}(x)$: Domain: $\underline{x>-k}$ or $(-k, \infty)$

Either $x>-k$ or $(-k, \infty)$ or Domain $>-k$ or x " $f t$ one sided inequality" their part (c) RANGE answer B1ft

1
6. (a) $\mathrm{f}(x)=1-\frac{2}{(x+4)}+\frac{x-8}{(x-2)(x+4)}$

$$
x \in \mathbb{R}, x \neq-4, x \neq 2
$$

$\mathrm{f}(x)=\frac{(x-2)(x+4)-2(x-2)+x-8}{(x-2)(x+4)} \quad$ An attempt to combine

$$
=\frac{x^{2}+2 x-8-2 x+4+x-8}{(x-2)(x+4)}
$$

$$
=\frac{x^{2}+x-12}{[(x+4)(x-2)]} \quad \text { Simplifies to give the correct }
$$ numerator. Ignore omission of denominator

$$
=\frac{(x+4)(x-3)}{[(x+4)(x-2)]} \quad \text { An attempt to factorise the } \quad \mathrm{dM} 1
$$

numerator.

$$
=\frac{(x-3)}{(x-2)}
$$

(b) $\quad \mathrm{g}(x)=\frac{\mathrm{e}^{x}-3}{\mathrm{e}^{x}-2} \quad x \in \mathbb{R}, x \neq \ln 2$.

Apply quotient rule: $\left\{\begin{array}{ll}u=\mathrm{e}^{x}-3 & v=\mathrm{e}^{x}-2 \\ \frac{d u}{d x}=\mathrm{e}^{x} & \frac{\mathrm{~d} v}{\mathrm{~d} x}=\mathrm{e}^{x}\end{array}\right\}$

$$
\begin{array}{rlr}
g^{\prime}(x) & =\frac{\mathrm{e}^{x}\left(\mathrm{e}^{x}-2\right)-\mathrm{e}^{x}\left(\mathrm{e}^{x}-3\right)}{\left(\mathrm{e}^{x}-2\right)^{2}} & \begin{array}{c}
\text { Applying } \frac{v u^{\prime}-u v^{\prime}}{v^{2}} \\
\text { Correct differentiation }
\end{array} \\
& =\frac{\mathrm{e}^{2 x}-2 \mathrm{e}^{x}-\mathrm{e}^{2 x}+3 \mathrm{e}^{x}}{\left(\mathrm{e}^{x}-2\right)^{2}} & \\
& =\frac{\mathrm{e}^{x}}{\left(\mathrm{e}^{x}-2\right)^{2}} & \text { Correct result A1 AG }
\end{array}
$$

(c) $\mathrm{g}^{\prime}(x)=1 \Rightarrow=\frac{\mathrm{e}^{x}}{\left(\mathrm{e}^{x}-2\right)^{2}}=1$

$$
\mathrm{e}^{x}=\left(\mathrm{e}^{x}-2\right)^{2} \quad \begin{gathered}
\text { Puts their differentiated numerator } \\
\text { equal to their denominator. }
\end{gathered} \quad \text { M1 }
$$

$$
e^{x}=e^{2 x}-2 e^{x}-2 e^{x}+4
$$

$$
\underline{\mathrm{e}^{2 x}-5 \mathrm{e}^{x}+4}=0
$$

$$
\underline{\mathrm{e}^{2 x}-5 \mathrm{e}^{x}+4}
$$

$$
\left(e^{x}-4\right)\left(e^{x}-1\right)=0
$$

$\mathrm{e}^{x}=4$ or $\mathrm{e}^{x}=1$	or solve quadratic in e^{x}
$x=\ln 4$ or $x=0$	both $x=0, \ln 4 \quad$ A1 $\quad 4$

7. (a)

$$
\mathrm{g}(x) \geq 1
$$

B1 1
(b)

$$
\begin{array}{rlr}
\mathrm{fg}(x)=\mathrm{f}\left(\mathrm{e}^{x^{2}}\right)=3 \mathrm{e}^{x^{2}}+\ln \mathrm{e}^{x^{2}} & \text { M1 } \\
& =x^{2}+3 \mathrm{e}^{x^{2}} * & \text { A1 } \\
(\mathrm{fg}: & \left.x \mapsto x^{2}+3 \mathrm{e}^{x^{2}}\right) &
\end{array}
$$

(c)
$\operatorname{fg}(x) \geq 3$
B1 1
(d)

$$
\mathrm{e}^{x^{2}} \neq 0
$$

$$
\begin{array}{rr}
\frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{2}+3 \mathrm{e}^{x^{2}}\right)=2 x+6 x \mathrm{e}^{x^{2}} & \text { M1 A1 } \\
2 x+6 x \mathrm{e}^{x^{2}}=x^{2} \mathrm{e}^{x^{2}}+2 x & \\
\mathrm{e}^{x^{2}}\left(6 x-x^{2}\right)=0 & \text { M1 } \\
6 x-x^{2}=0 & \text { A1 } \\
x=0,6 & \text { A1 A1 }
\end{array}
$$

[10]
8. (a)

$$
\begin{array}{rlr}
\mathrm{f}^{\prime}(x) & =3 \mathrm{e}^{x}+3 x \mathrm{e}^{x} & \text { M1 A1 } \\
3 \mathrm{e}^{x}+3 x \mathrm{e}^{x} & =3 \mathrm{ex}(1+x)=0 & \\
x & =-1 & \text { M1A1 } \\
\mathrm{f}(-1) & =-3 \mathrm{e}^{-1}-1 & \text { B1 } \tag{B1 5}
\end{array}
$$

(b)

$$
\begin{array}{ll}
x_{1}=0.2596 & \text { B1 } \\
x_{2}=0.2571 & \text { B1 } \\
x_{3}=0.2578 & \text { B1 }
\end{array}
$$

(c) Choosing ($0.25755,0.25765$) or an appropriate tighter interval.

$$
\begin{aligned}
& f(0.25755)=-0.000379 \ldots \\
& f(0.25765)=0.000109 \ldots
\end{aligned}
$$

Change of sign (and continuity) \Rightarrow root $\in(0.25755,0.25765) *$ cso A1 $\quad 3$ ($\Rightarrow x=0.2576$, is correct to 4 decimal places)

Note:

$$
x=0.25762765 \ldots \text { is accurate }
$$

9. (a) $\mathrm{e}^{2 x+1}=2$

$$
\begin{array}{ll}
2 x+1=\ln 2 & \text { M1 } \\
x=\frac{1}{2}(\ln 2-1) & \text { A1 }
\end{array}
$$

(b) $\frac{\mathrm{d} y}{\mathrm{~d} x}=8 \mathrm{e}^{2 x+1}$
$x=\frac{1}{2}(\ln 2-1) \Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=16$ B1
$y-8=16\left(x-\frac{1}{2}(\ln 2-1)\right)$
$y=16 x+16-8 \ln 2$
10. (a) $\ln 3 x=\ln 6$ or $\ln x=\ln \left(\frac{6}{3}\right)$ or $\ln \left(\frac{3 x}{6}\right)=0$

M1
A1cso 2
11. (a) $D=10, t=5, x=10 \mathrm{e}^{-\frac{1}{8} \times 5}$
(b) $\quad D=10+10 \mathrm{e}^{-\frac{5}{8}}, t=1, x=15.3526 \ldots \times \mathrm{e}^{-\frac{1}{8}}$ $x=13.549\left(^{*}\right)$

Alt. (b) $x=10 \mathrm{e}^{-\frac{1}{8} \times 6}+10 \mathrm{e}^{-\frac{1}{8} \times 1} \mathrm{M} 1 \quad x=13.549\left(^{*}\right)$
A1cso
(Main scheme M1 is for $\left(10+10 \mathrm{e}^{-\frac{5}{8}}\right) \mathrm{e}^{-\frac{1}{8}}$, or $\{10+$ their(a) $\} \mathrm{e}^{-\frac{1}{8}}$
N.B. The answer is given. There are many correct answers seen which deserve M0A0 or M1A0
(c) $\quad 15.3526 \ldots \mathrm{e}^{-\frac{1}{8} T}=3$
$\mathrm{e}^{-\frac{1}{8} T}=\frac{3}{15.3526 \ldots}=0.1954 \ldots$
$-\frac{1}{8} T=\ln 0.1954 \ldots$
$T=13.06 \ldots$ or 13.1 or 13
$1^{\text {st }} \mathrm{M}$ is for $\left(10+10 \mathrm{e}^{-\frac{5}{8}}\right) \mathrm{e}^{-\frac{T}{8}}=3$ o.e.
$2^{\text {nd }} \mathrm{M}$ is for converting $\mathrm{e}^{-\frac{T}{8}}=k \quad(k>0)$ to $-\frac{T}{8}=\ln k$. This is independent of $1^{\text {st }} \mathrm{M}$.

Trial and improvement: M1 as scheme, M1 correct process for their equation (two equal to 3 s.f.)
A1 as scheme
12. (a) $425^{\circ} \mathrm{C}$

B1 1
(b) $300=400 \mathrm{e}^{-0.05 t}+25 \Rightarrow 400 \mathrm{e}^{-0.05 t}=275$ M1
sub. $T=300$ and attempt to rearrange to $e^{-0.05 t}=a$, where $a \in$ Q
$e^{-0.05 t}=\frac{275}{400}$
M1 correct application of logs
$t=7.49$
A1 4
(c) $\frac{\mathrm{d} T}{\mathrm{~d} t}=-20 \mathrm{e}^{-0.05 t} \quad$ (M1 for $k \mathrm{e}^{-0.05 t}$) M1 A1

At $t=50$, rate of decrease $=(\pm) 1.64{ }^{\circ} \mathrm{C} / \mathrm{min}$
(d) $T>25$, (since $\mathrm{e}^{-0.05 t} \rightarrow 0$ as $t \rightarrow \infty$)

B1 1
13. $\frac{d y}{d x}=\frac{1}{x}$

M1 A1
At $x=3$, gradient of normal $=\frac{-1}{\frac{1}{3}}=-3$
$y-\ln 1=-3(x-3)$
$y=-3 x+9$
M1
A1 5
[5]
14. (a) Setting $p-300$ at $t=0 \Rightarrow 300=\frac{2800 a}{1+a}$ (300 = 2500a); $a=0.12($ c.s.o. $)\left({ }^{*}\right)$
dM1 A1 3
(b) $1850=\frac{2800(0.12) \mathrm{e}^{0.2 t}}{1+0.12 \mathrm{e}^{0.2 t}} ; \mathrm{e}^{0.2 t}=16.2 \ldots$ Correctly taking logs to $0.2 t=\ln k$ $t=14$ (13.9..)
(c) Correct derivation:

B1 1
(Showing division of num. and den. by $\mathrm{e}^{0.2 t}$; using a)
(d) Using $t \rightarrow \infty, \mathrm{e}^{-0.2 t} \rightarrow 0$, M1

$$
\begin{equation*}
p \rightarrow \frac{336}{0.12}=2800 \tag{A1 2}
\end{equation*}
$$

15. (a) $\log 3^{x}=\log 5$
taking logs
$x=\frac{\log 5}{\log 3}$ or $x \log 3=\log 5$
A1
$=1.46$ cao
A1 4

1

> (b) $2=\log _{2} \frac{2 x+1}{x}$
> $\frac{2 x+1}{x}=4$ or equivalent;
> 4
> $2 x+1=4 x$
> multiplying by x to get a linear equation
> $x=\frac{1}{2}$
> (c) $\sec x=1 / \cos x$ B1
> $\sin x=\cos x \Rightarrow \tan x=1 \quad x=45$
> M1, A1 3
> use of $\tan x$
[10]
16. (a) $\quad \mathrm{I}=3 \mathrm{x}+2 \mathrm{e}^{x}$

Using limits correctly to give $1+2$ e. (c.a.o.)
B1 must subst 0 and 1 and subtract
(b) $\quad A=(0,5)$;
$y=5$
$\frac{d y}{d x}=2 e^{x}$
B1
Equation of tangent: $y=2 x+5 ; \quad c=-2.5$
M1; A1 4
attempting to find eq. of tangent and subst in $y=0$, must be linear equation
(c) $y=\frac{5 x+2}{x+4} \Rightarrow y x+4 y=5 x+2 \Rightarrow 4 y-2=5 x-x y$
putting $y=$ and att. to rearrange to find x.
$g^{-1}(x)=\frac{4 x-2}{5-x}$ or equivalent
A1 3
must be in terms of x
(d) $\quad g f(0)=g(5) ;=3$

M1; A1 2
att to put 0 into f and then their answer into g
17. (a) (i) $\quad \underline{x}=a^{y}$
(ii) In both sides of (i) i.e $\ln x=\ln a^{y}$ or $(y=) \log _{\mathrm{a}} x=\frac{\ln x}{\ln a}$ $=y \ln a * \Rightarrow y \ln a=\ln x$
$\mathrm{B} 1_{\text {cso }} \quad 1$
$B 1 x=e^{y l n a}$ is $B O$
B1 Must see $\ln a^{y}$ or use of change of base formula.
(b) $y=\frac{1}{\ln a} \bullet \ln x, \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x},=\frac{1}{\underline{\ln a} \times \frac{1}{x}} *$

M1, A1 ${ }_{\text {cso }}$
2
ALT. $\left[\right.$ or $\left.\frac{1}{x}=\frac{\mathrm{d} y}{\mathrm{~d} x} \cdot \ln a \quad \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1}{x \ln a} *\right]$
M1, A1 ${ }_{\text {cso }}$ M1 needs some correct attempt at differentiating.
(c) $\log _{10} 10=1 \Rightarrow \mathrm{~A}$ is $(10, \underline{1}) y_{\mathrm{A}}=1$
from(b) $\quad m=\frac{1}{10 \ln a}$ or $\frac{1}{10 \ln 10}$ or 0.043 (or better)
equ of target $y-1=m(x-10)$
i.e $y-1=\frac{1}{10 \ln 10}(x-10)$ or $y=\frac{1}{10 \ln 10} x+1-\frac{1}{\ln 10} \quad$ (o.e)

A1 4

B1 Allow either
M1 ft their y_{A} and m
(d) $y=0$ in (c) $\Rightarrow 0=\frac{x}{10 \ln 10}+1-\frac{1}{\ln 10} \Rightarrow x,=10 \ln 10\left(\frac{1}{\ln 10}-1\right)$
$\underline{x=10-10 \ln 10}$ or $\underline{10(1-\ln 10)}$ or $10 \ln 10\left(\frac{1}{\ln 10}-1\right)$
A1 2

M1 Attempt to solve correct equation. Allow if a not $=10$.
18. (a)

Shape
$p=\frac{1}{3}$ or $\left\{\frac{1}{3}, 0\right\}$ seen
B1
2
(b) Gradient of tangent at $Q=\frac{1}{q}$

Gradient of normal $=-q$ M1

Attempt at equation of $O Q[y=-q x]$ and substituting $x=q, y=\ln 3 q$
or attempt at equation of tangent $[y-3 \ln q=-q(x-q)]$
with $x=0, y=0$
or equating gradient of normal to $(\ln 3 q) / q$
$q^{2}+\ln 3 q=0\left({ }^{*}\right)$
A1
(c) $\ln 3 x=-x^{2} \Rightarrow 3 x=\mathrm{e}^{-x^{2}} ; \Rightarrow x=\frac{1}{3} \mathrm{e}^{-x^{2}}$

M1; A1 2
(d) $x_{1}=0.298280 ; x_{2}=0.304957, x_{3}=0.303731, x_{4}=0.303958$ Root $=0.304$ (3 decimal places)
19. $\frac{\mathrm{d} y}{\mathrm{~d} x}=6 x^{\frac{1}{2}}-\frac{1}{x}$

At $x=1, \frac{\mathrm{~d} y}{\mathrm{~d} x}=5 ; y=4-\ln 5$
A1; B1
Tangent is $y-4+\ln 5=5(x-1)$
At $y=0, \quad x=\frac{1+\ln 5}{5}=\frac{\ln \mathrm{e}+\ln 5}{5}=\frac{1}{5} \ln 5 \mathrm{e}$
20. (a) A is $(2,0)$; B is $\left(0, \mathrm{e}^{-2}-1\right)$
(b) $y=\mathrm{e}^{x-2}-1$

$$
\text { Change over } x \text { and } y, \quad x=\mathrm{e}^{y-2}-1 \quad \text { M1 }
$$

$$
y-2=\ln (x+1)
$$

$$
y=2+\ln (x+1)
$$

$$
\mathrm{f}^{-1}: x / 2+\ln (x+1), x>-1
$$

(c) $\mathrm{f}(x)-x=0$ is equivalent to $\mathrm{e}^{x-2}-1-x=0$

Let $g(x)=\mathrm{e}^{x-2}-1-x$

$$
\begin{aligned}
& g(3)=-1.28 \ldots \\
& g(4)=\quad 2.38 \ldots
\end{aligned}
$$

Sign change \Rightarrow root α
M1 A1 2
(d) $x_{n+1}=2+\ln \left(x_{n}+1\right), x_{1}=3.5 \quad$ M1
$x_{2}=3.5040774$ A1
$x_{3}=3.5049831$
$x_{4}=3.5051841$
$x_{5}=3.5052288$
Needs convincing argument on 3 d.p. accuracy
Take 3.5053 and next iteration is reducing 3.50525... M1
Answer: 3.505 (3 d.p.) A1 5
21. (i) $\mathrm{e}^{2 x+3}=6$

$$
\begin{array}{lr}
2 x+3=\ln 6 & \text { M1 } \\
x=\frac{1}{2}(\ln 6-3) & \text { M1 A1 }
\end{array}
$$

(ii) $\ln (3 x+2)=4$

$$
\begin{array}{lr}
3 x+2=\mathrm{e}^{4} & \mathrm{M} 1 \\
x=\frac{1}{3}\left(\mathrm{e}^{4}-2\right) & \text { M1 A1 }
\end{array}
$$

22. (a)

B1 shape
B1 x-intercept labelled
(b) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{x}$ so tangent line to (e, 1) is $y=\frac{1}{\mathrm{e}} x+C$
the line passes through $(\mathrm{e}, 1)$ so $1=\mathrm{e} \frac{1}{\mathrm{e}}+C$ and $C=0$
The line passes through the origin.

(c) All lines $y=m x$ passing through the origin and having a gradient >0 lie above the x-axis.

Those having a gradient $<\frac{1}{\mathrm{e}}$ will lie below the line.
$y=\frac{x}{\mathrm{e}}$ so it cuts $y=\ln x$ between $x=1$ and $x=\mathrm{e}$.
(d) $x_{0}=1.86$
$x_{1}=\mathrm{e}^{\frac{x_{n}}{3}}=1.859$
$x_{2}=1.858$
$x_{3}=1.858$
$x_{4}=1.858$
$x_{5}=1.857$
(e) When $x=1.8575, \ln x-\frac{1}{3} x=0.0000648 \ldots>0$

When $x=1.8565, \ln x=-0.000140 \ldots<0$
Change of sign implies there is a root between.
A1 3

