1. (a)

M1 A1 2

Note

M1: V or
or graph with vertex on the x-axis.
A1: $\left(\frac{5}{2},\{0\}\right)$ and $(\{0\}, 5)$ seen and the graph appears in both the first and second quadrants.
(b) $\frac{x=20}{2 x-5}=-(15+x) ; \Rightarrow x=-\frac{10}{3}$

B1 M1; A1 oe. 3

Note

M1: Either $2 x-5=-(15+x)$ or $-(2 x-5)=15+x$
(c) $\quad \mathrm{fg}(2)=\mathrm{f}(-3)=|2(-3)-5| ;=|-11|=11$

Note

M1: Full method of inserting $g(2)$ into $f(x)=|2 x-5|$ or for inserting $x=2$ into $\left|2\left(x^{2}-4 x+1\right)-5\right|$. There must be evidence of the modulus being applied.
(d) $\mathrm{g}(x)=x^{2}-4 x+1=(x-2)^{2}-4+1=(x-2)^{2}-3$. Hence $\mathrm{g}_{\min }=-3 \mathrm{M} 1$

Either $g_{\text {min }}=-3$ or $g(x) \geq-3$
or $g(5)=25-20+1=6$
$\underline{-3 \leq g(x) \leq 6}$ or $\underline{-3 \leq y \leq 6} \quad$ A1

Note

M1: Full method to establish the minimum of g. Eg: $(x \pm \alpha)^{2}+\beta$ leading to $\mathrm{g}_{\text {min }}=\beta$. Or for candidate to differentiate the quadratic, set the result equal to zero, find x and insert this value of x back into $\mathrm{f}(x)$ in order to find the minimum.
$B 1$: For either finding the correct minimum value of g
(can be implied by $\mathrm{g}(x) \geq-3$ or $\mathrm{g}(x)>-3$) or for stating that $\mathrm{g}(5)=6$
A1: $-3 \leq g(x) \leq 6$ or $-3 \leq y \leq 6$ or $-3 \leq g \leq 6$. Note that: $-3 \leq x \leq 6$ is A0.
Note that: $-3 \leq \mathrm{f}(x) \leq 6$ is A0. Note that: $-3 \geq \mathrm{g}(x) \geq 6$ is A0.
Note that: $\mathrm{g}(x) \geq-3$ or $\mathrm{g}(x)>-3$ or $x \geq-3$ or $x>-3$ with no working gains M1B1A0.

Note that for the final Accuracy Mark:

If a candidate writes down $-3<\mathrm{g}(x)<6$ or $-3<y<6$, then award M1B1A0.
If, however, a candidate writes down $\mathrm{g}(x) \geq-3, \mathrm{~g}(x) \leq 6$, then award A0.
If a candidate writes down $\mathrm{g}(x) \geq-3$ or $\mathrm{g}(x) \leq 6$, then award A0.
2. (a) (i) $(3,4)$

B1 B1
(ii) $(6,-8)$

B1 B1
(b)

Note

B1: Correct shape for $x \geq 0$, with the curve meeting the positive y-axis and the turning point is found below the x-axis. (providing candidate does not copy the whole of the original curve and adds nothing else to their sketch.).
B1: Curve is symmetrical about the y-axis or correct shape of curve for $x<0$.
Note: The first two B1B1 can only be awarded if the curve has the correct shape, with a cusp on the positive y-axis and with both turning points located in the correct quadrants. Otherwise award B1B0.
B1: Correct turning points of $(-3,-4)$ and $(3,-4)$. Also, $(\{0\}, 5)$ is marked where the graph cuts through the y-axis. Allow $(5,0)$ rather than $(0,5)$ if marked in the "correct" place on the y-axis.
(c) $\mathrm{f}(x)=(x-3)^{2}-4$ or $\mathrm{f}(x)=x^{2}-6 x+5$ M1 A1 2

Note

M1: Either states $\mathrm{f}(x)$ in the form $(x \pm \alpha)^{2} \pm \beta ; \alpha, \beta \neq 0$
Or uses a complete method on $\mathrm{f}(x)=x^{2}+a x+b$, with $\mathrm{f}(0)=5$ and
$\mathrm{f}(3)=-4$ to find both a and b.
A1: Either $(x-3)^{2}-4$ or $x^{2}-6 x+5$
(d) Either: The function f is a many-one \{mapping\}.

B1 1
Or: The function f is not a one-one \{mapping\}.

Note

B1: Or: The inverse is a one-many \{mapping and not a function \}.
Or: Because $\mathrm{f}(0)=5$ and also $\mathrm{f}(6)=5$.
Or: One y-coordinate has 2 corresponding x-coordinates \{and therefore cannot have an inverse\}.
3. $y=\ln |x|$

Right-hand branch in quadrants 4 and 1 . Correct shape.
Left-hand branch in quadrants 2 and 3 . Correct shape.
Completely correct sketch and both $(-1,\{0\})$ and $(1,\{0\})$
4. (i) $y=\mathrm{f}(-x)+1$

Shape of and must have a maximum in quadrant 2 and a minimum in quadrant 1 or on the positive y-axis.
(ii) $y=\mathrm{f}(x+2)+3$

Any translation
The translated maximum has either x-coordinate of 0 (can be implied) or y-coordinate of 6 .
The translated curve has maximum $(\{0\}, 6)$ and is in the correct position on the Cartesian axes.
(iii) $y=2 f(2 x)$

Shape of $\bigcap_{\text {with a minimum in quadrant } 2 \text { and a }}$ maximum in quadrant 1.
Either $(\{0\}, 2)$ or $A^{\prime}(1,6)$
B1
Both $(\{0\}, 2)$ and $A^{\prime}(1,6)$
5. (i) (a) $\ln (3 x-7)=5$

$$
\mathrm{e}^{\ln (3 x-7)}=\mathrm{e}^{5}
$$

Takes e of both sides of the equation.
This can be implied by

$$
3 x-7=\mathrm{e}^{5} . \quad \text { M1 }
$$

Then rearranges to make x the subject. dM1

$$
\begin{aligned}
& 3 x-7=\mathrm{e}^{5} \Rightarrow \\
& x=\frac{e^{5}+7}{3}\{=51.804 \ldots\}
\end{aligned}
$$

Exact answer of $\frac{e^{5}+7}{3}$.
A1 3
(b) $3^{x} e^{7 x+2}=15$
$\ln \left(3^{x} e^{7 x+2}\right)=\ln 15$
$\ln 3^{x}+\ln \mathrm{e}^{7 x+2}=\ln 15$
Applies the addition law of logarithms.
$x \ln 3+7 x+2=\ln 15$
$x \ln 3+7 x+2=\ln 15$
$x(\ln 3+7)=-2+\ln 15$
Factorising out at least two x terms on one side and collecting number terms on the other side.
Takes \ln (or logs) of both sides of the equation.

M1 ddM1
A1 oe正

$$
x=\frac{-2+\ln 15}{7+\ln 3}\{=0.0874 \ldots\}
$$

Exact answer of

$$
\frac{-2+\ln 15}{7+\ln 3} \quad \text { A1 oе } \quad 5
$$

(ii) (a) $\mathrm{f}(x)=\mathrm{e}^{2 \mathrm{x}}+3, x \in$
$y=\mathrm{e}^{2 x}+3 \Rightarrow \mathrm{y}-3=\mathrm{e}^{2 x}$
Attempt to make x (or swapped y) the subject
$\Rightarrow \ln (y-3)=2 x$
$\Rightarrow \frac{1}{2} \ln y-3=x$
Makes $\mathrm{e}^{2 x}$ the subject and takes \ln of both sides M1

Hence $\mathrm{f}^{-1}(x)=\underline{\frac{1}{2} \ln (x-3)}$
$\frac{1}{2} \ln (x-3)$ or $\ln \sqrt{(x-3)}$

$$
\text { or } \frac{\mathrm{f}^{-1}(x)=\frac{1}{2} \ln (y-3)}{\text { (see appendix) }} \quad \underline{\text { A1 }} \text { cao }
$$

$\mathrm{f}^{-1}(x)$: Domain: $\underline{x>3}$ or $(3, \infty)$

Either $\underline{x>3}$ or $(3, \infty)$ or Domain > 3 .

B1
(b) $\mathrm{g}(x)=\ln (x-1), x \in \square$, $x>1$
$\operatorname{fg}(x)=\mathrm{e}^{2 \ln (x-1)}+3$
$\left\{=(x-1)^{2}+3\right\}$

$$
\begin{aligned}
& \text { An attempt to put function } \\
& \text { g into function } \mathrm{f} \text {. } \quad \text { M1 } \\
& \begin{array}{c}
\mathrm{e}^{2 \ln (x-1)}+3 \text { or }(x-1)^{2}+3 \text { or } \\
x^{2}-2 x+4 . \quad \text { A1 isw }
\end{array}
\end{aligned}
$$

$\mathrm{fg}(x)$: Range: $y>3$
or $(3, \infty)$
Either $y>3$ or $(3, \infty)$ or Range >3 or $\mathrm{fg}(x)>3$. B1 3
6. (a)

Curve retains shape
when $x>\frac{1}{2} \ln k$
Curve reflects through the x-axis
when $x>\frac{1}{2} \ln k$
$(0, k-1)$ and $\left(\frac{1}{2} \ln k, 0\right)$ marked
in the correct positions.
(b)

Correct shape of curve. The curve
should be contained in quadrants 1, 2 and 3
(Ignore asymptote)
$(1-k, 0)$ and $\left(0, \frac{1}{2} \ln k\right)$
(c) Range of $\mathrm{f}: \underline{\mathrm{f}(x)>-k}$ or $y>-k$ or $(-k, \infty)$

Either $\underline{f(x)>-k}$
or $y>-k$ or
$(-k, \infty)$ or $\underline{f}>-k$ or
B1 1
(d) $y=\mathrm{e}^{2 x}-k \Rightarrow y+k=\mathrm{e}^{2 x}$
$\Rightarrow \ln (y+k)=2 x$
$\Rightarrow \frac{1}{2} \ln (y+k)=x$

Hence $\mathrm{f}^{-1}(x)=\underline{\frac{1}{2} \ln (x+k)}$
(e) $\mathrm{f}^{-1}(x)$: Domain: $\underline{x>-k}$ or $(-k, \infty)$

Attempt to make x
(or swapped y) the subject M1
Makes $\mathrm{e}^{2 x}$ the subject and M1 takes \ln of both sides
$\underline{\frac{1}{2} \ln (x+k)}$ or $\underline{\ln \sqrt{(x+k)} \quad \underline{\text { A1 }} \text { cao } \quad 3}$
7. (a)

Shape
B1
$(3,6)$
B1
$(7,0)$
B1
(b)

Shape
$(3,5)$
$(7,2)$
B1 3
8. (a)
$\mathrm{g}(x) \geq 1$
B1 1
(b)

$$
\begin{array}{rlrl}
\mathrm{fg}(x)=\mathrm{f}\left(\mathrm{e}^{x^{2}}\right)=3 \mathrm{e}^{x^{2}}+\ln \mathrm{e}^{x^{2}} & \text { M1 } \\
& =x^{2}+3 \mathrm{e}^{x^{2}} * & \text { A1 } & 2 \\
(\mathrm{fg}: x & \left.\mapsto x^{2}+3 \mathrm{e}^{x^{2}}\right) &
\end{array}
$$

(c)

$$
\mathrm{fg}(x) \geq 3
$$

B1 1
(d)

$$
\begin{array}{cc}
\frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{2}+3 \mathrm{e}^{x^{2}}\right)=2 x+6 x \mathrm{e}^{x^{2}} & \text { M1 A1 } \\
2 x+6 x \mathrm{e}^{x^{2}}=x^{2} \mathrm{e}^{x^{2}}+2 x & \\
\mathrm{e}^{x^{2}}\left(6 x-x^{2}\right)=0 & \text { M1 } \\
\mathrm{e}^{x^{2}} \neq 0, & \text { A1 } \\
6 x-x^{2}=0 & \text { A1 A1 } \\
x=0,6 &
\end{array}
$$

9. (a)

ฟ shape
Vertices correctly placed
B1
(b)

shape

B1
Vertex and intersections with axes correctly placed
(c) $\quad P:(-1,2)$

B1
Q: $(0,1)$
B1
$R:(1,0)$
B1
(d) $x>-1 ; 2-x-1=\frac{1}{2} x$

Leading to $x=\frac{2}{3}$
$x<-1 ; 2+x+1=\frac{1}{2} x$
Leading to $x=-6$
A1 5
[12]
10. (a) $x^{2}-2 x-3=(x-3)(x+1)$
$\mathrm{f}(x)=\frac{2(x-1)-(x+1)}{(x-3)(x+1)}\left(\right.$ or $\left.\frac{2(x-1)}{(x-3)(x+1)}-\frac{x+1}{(x-3)(x+1)}\right)$
$=\frac{x-3}{(x-3)(x+1)}=\frac{1}{x+1} *$
Cso
A1 4
(b) $\left(0, \frac{1}{4}\right)$ Accept $0<y<\frac{1}{4}, 0<\mathrm{f}(x)<\frac{1}{4}$ etc. B1B1 2
(c) Let $y=\mathrm{f}(x)$
$y=\frac{1}{x+1}$
$x=\frac{1}{y+1}$
$y x+x=1$
$y=\frac{1-x}{x}$
or $\frac{1}{x}-1 \quad$ M1A1
$\mathrm{f}^{-1}(x)=\frac{1-x}{x}$
Domain of f^{-1} is $\left(0, \frac{1}{4}\right)$ ft their part (b) B1ft
(d) $\quad \operatorname{fg}(x)=\frac{1}{2 x^{2}-3+1}$
$\frac{1}{2 x^{2}-2}=\frac{1}{8}$
$x^{2}=5$
$x= \pm \sqrt{ } 5$
both
A1
A1 3
11. (a)

Shape
B1
$(5,4)$
B1
$(-5,4)$
B1
3
(b) For the purpose of marking this paper, the graph is identical to (a) Shape
(c)

$(-6,-8)$
General shape - unchanged
Translation to left

In all parts of this question ignore any drawing outside the domains shown in the diagrams above.
12. (a) $x=1-2 y^{3} \Rightarrow y=\left(\frac{1-x}{2}\right)^{1 / 3}$ or $\sqrt[3]{\frac{1-x}{2}}$
$\mathrm{f}^{-1}: x \mapsto\left(\frac{1-x}{2}\right)^{1 / 3}$
(b) $\quad \operatorname{gf}(x)=\frac{3}{1-2 x^{3}}-4$
$=\frac{3-4\left(1-2 x^{3}\right)}{1-2 x^{3}}$
$=\frac{8 x^{3}-1}{1-2 x^{3}}\left(^{*}\right)$
gf : $x \mapsto \frac{8 x^{3}-1}{1-2 x^{3}}$
Ignore domain
(c) $8 x^{3}-1=0$

Attempting solution of numerator $=0$
$x=\frac{1}{2}$ Correct answer and no additional answers

A1 2
(d) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\left(1-2 x^{3}\right) \times 24 x^{2}+\left(8 x^{3}-1\right) \times 6 x^{2}}{\left(1-2 x^{3}\right)^{2}}$
$=\frac{18 x^{2}}{\left(1-2 x^{3}\right)^{2}}$
Solving their numerator $=0$ and substituting to find y.
$x=0, y=-1$
A1 5
13. (a) Finding $g(4)=k$ and $f(k)=\ldots$ or $f(x)=\ln \left(\frac{4}{x-3}-1\right)$
$\left[f(2)=\ln \left(2 x^{2}-1\right) \quad f g(4)=\ln (4-1)\right]=\ln 3$
(b) $y=\ln (2 x-1) \Rightarrow \mathrm{e}^{y}=2 x-1$ or $e^{x}=2 y-1$
$\mathrm{f}^{-1}(x)=\frac{1}{2}\left(\mathrm{e}^{x}+1\right)$ Allow $y=\frac{1}{2}\left(\mathrm{e}^{x}+1\right)$
M1, A1
A1
Domain $x \in \mathbb{R}[$ Allow \mathbb{R} all reals, $(-\infty, \infty)]$ independent
B1
(c)

Shape, and x-axis should appear to be asymptote
Equation $\boldsymbol{x}=3$ needed, may see in diagram (ignore others)
Intercept ($0, \frac{2}{3}$) no other; accept $y=2 / 3$ (0.67) or on graph
(d) $\frac{2}{x-3}=3 \Rightarrow x=3 \frac{2}{3}$ or exact equiv.
$\frac{2}{x-3}=-3, \Rightarrow x=2 \frac{1}{3}$ or exact equiv.
B1

M1, A1 3
Note: $2=3(x+3)$ or $2=3(-x-3)$ o.e. is M0A0
Alt: Squaring to quadratic $\left(9 x^{2}-54 x+77=0\right)$ and solving M1; B1A1
14. (a) $y=\ln (4-2 x)$
$\mathrm{e}^{y}=4-2 x$ leading to $x=2-\frac{1}{2} \mathrm{e}^{y}$ Changing subject and removing ln M1 A1
$y=2-\frac{1}{2} \mathrm{e}^{x} \Rightarrow \mathrm{f}^{-1} \mapsto 2-\frac{1}{2} \mathrm{e}^{x} *$
cso
Domain of f^{-1} is B1 4
(b) Range of f^{-1} is $\mathrm{f}^{-1}(x)<2$ (and $\mathrm{f}^{-1}(x) \in \square$) B1 1
(c)

Shape	B1	
1.5	B1	
$\ln 4$	B1	
$y=2$	B1	4

(d) $x_{1} \approx-0.3704, x_{2} \approx-0.3452$
cao
B1, B1
If more than 4 dp given in this part a maximum on one mark is lost.
Penalise on the first occasion.
(e) $x_{3}=-0.35403019 \ldots$
$x_{4}=-0.35092688 \ldots$
$x_{5}=-0.35201761 \ldots$
$x_{6}=-0.35163386 \ldots \quad$ Calculating to at least x_{6} to at least four dp M1
$k \approx-0.352$ сао A1 2

Alternative
$k \approx-0.352 \quad$ Found in any way
Let $g(x)=x+\frac{1}{2} e^{x}$
$\mathrm{g}(-0.3515) \approx+0.0003$, $\mathrm{g}(-0.3525) \approx-0.001 \quad$ M1
Change of sign (and continuity) $\Rightarrow k \in(-0.3525,-0.3515)$

$$
\Rightarrow k=-0.352 \text { (to } 3 \mathrm{dp} \text {) }
$$

A1 2
15. (a)

Mod graph, reflect for $\mathrm{y}<0 \quad$ M1
$(0,2),(3,0)$ or marked on axes A1
Correct shape, including cusp A1
(b)

Attempt at reflection in $y=x \quad$ M1
Curvature correct A1
$(-2,0),(0,3)$ or equiv. B1
(c)

Attempt at 'stretches' M1
$(0,-1)$ or equiv. B1
$(1,0)$ B1
16. (a)

Log graph: Shape B1
Intersection with -ve x-axis dB1
$(0, \ln k),(1-k, 0)$

Mod graph : V shape, vertex on +ve x-axis B1
$(0, k)$ and $\left(\frac{k}{2}, 0\right)$ B1 5
(b) $\mathrm{f}(x) \in \mathrm{R} \quad,-\infty<\mathrm{f}(x)<\infty, \quad \infty<y<\infty$
(c) $\operatorname{fg}\left(\frac{k}{4}\right)=\ln \left\{k+\left|\frac{24}{4}-k\right|\right\} \quad$ or $\quad \mathrm{f}\left(\left|-\frac{k}{2}\right|\right)$
$=\ln \left(\frac{3 k}{2}\right)$
A1 2
(d) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{x+k}$

B1

Equating (with $x=3$) to grad. of line; $\frac{1}{3+k}=\frac{2}{9}$
$k=11 / 2$
A1ft 4
17. (a)

B1 Shape
B1 Point
(b)

B1 Shape
B1 Point
(c)

B1 Shape >0
B1 Point $x<0$
B1 Point
$(-2,4)$
3
18. (a) $g f(x)=e^{2(2 x+\ln 2)}$

$$
=\mathrm{e}^{4 x} \mathrm{e}^{2 \ln 2}
$$

$=\mathrm{e}^{4 x} \mathrm{e}^{\ln 4}$
$=4 \mathrm{e}^{4 x}$
(b)

B1 shape \& $(0,4) \quad 1$
(c) $g f(x)>0$
(d) $\frac{d}{d x} g f(x)=16 e^{4 x}$

$$
\begin{aligned}
e^{4 x} & =\frac{3}{16} \\
4 x & =\ln \frac{3}{16} \\
x & =-0.418
\end{aligned} \quad \text { M1 attempt to solve } \begin{array}{ll}
\text { A1 } \\
& \text { A1 }
\end{array}
$$

19. (a) $\mathrm{f}(x)=\frac{5 x+1}{(x+2)(x-1)}-\frac{3}{x+2}$
factors of quadratic denominator
$=\frac{5 x+1-3(x-1)}{(x+2)(x-1)}$
common denominator M1
simplifying to linear numerator M1
$=\frac{2 x+4}{(x+2)(x-1)}=\frac{2(x+2)}{(x+2)(x-1)}=\frac{2}{x-1} \mathrm{AG}$
A1cso 4
(b) $y=\frac{2}{x-1} \Rightarrow x y-y=2 \Rightarrow$
$x y=2+y$ or $x-1=\frac{2}{y}$
$\mathrm{f}^{-1}(x)=\frac{2+x}{x}$ or equiv.
(c) $\operatorname{fg}(x)=\frac{2}{x^{2}+4}$ (attempt) $\left[\frac{2}{" g "-1}\right]$

Setting $\frac{2}{x^{2}+4}=\frac{1}{4}$ and finding $x^{2}=\ldots ; x= \pm 2$ DM1; A1 3
20. (a)

Translation \leftarrow by 1
Intercepts correct
A1 2
(b)

$\begin{array}{lrl}x \geq 0, \text { correct "shape" } & \text { B1 } \\ \text { [provided not just original] } & & \\ \text { Reflection in } y \text {-axis } & \text { B1ft } & \\ \text { Intercepts correct } & \text { B1 } & 3\end{array}$
(c) $a=-2, b=-1$

B1B1
2
$\begin{array}{ll}\text { (d) Intersection of } y=5 x \text { with } y=-x-1 & \text { M1A1 } \\ \text { Solving to give } x=-\frac{1}{6} & \text { M1A1 } 4\end{array}$
21. (a)

> Reflected in x-axis $0<x<1$
> Cusp + coords
> A1 2
> Clear curve going correct way
> Ignore curve $x<0$

General shaped and -2
(1/2, 0)
B1 2
Ignore curve $x<0$

Rough reflection in $y=x$
B1
$(0,1)$ or 1 on y-axis B1
$(-2,0)$ or -2 on x-axis and no curve $x<-2$ B1
22. (a) $\mathrm{I}=3 x+2 \mathrm{e}^{x}$

B1
M1 A1 3 must subst 0 and 1 and subtract
(b) $\quad A=(0,5)$;

$$
y=5
$$

$\frac{d y}{d x}=2 e^{x}$
B1
M1; A1 4
attempting to find eq. of tangent and subst in $y=0$, must be linear equation
(c) $y=\frac{5 x+2}{x+4} \Rightarrow y x+4 y=5 x+2 \Rightarrow 4 y-2=5 x-x y$
putting $y=$ and att. to rearrange to find x.
$g^{-1}(x)=\frac{4 x-2}{5-x}$ or equivalent
must be in terms of x
(d) $\quad g f(0)=g(5) ;=3$

M1; A1 2
att to put 0 into f and then their answer into g
M1; A1

A1 3
23. (a) $\quad \frac{2 x+5}{x+3}-\frac{1}{(x+3)(x+2)}=\frac{(2 x+5)(x+2)-1}{(x+3)(x+2)}$
$=\frac{2 x^{2}+9 x+9}{(x+3)(x+2)}$
$=\frac{(2 x+3)(x+3)}{(x+3)(x+2)}$
$=\frac{2 x+3}{x+2}$
M1 A1

A1 5
(b) $2-\frac{1}{x+2}=\frac{2(x+2)-1}{x+2}=\frac{2 x+3}{x+2}$ or the reverse
(c) $\quad T_{1}$: Translation of -2 in x direction B1
T_{2} : Reflection in the x-axis B1
T_{3} : Translation of (+)2 in y direction B1
All three fully correct B1 4

One alternative is
T_{1} : Translation of -2 in x direction
T_{2} : Rotation of 90° clockwise about O
T_{3} : Translation of -2 in x direction
24. (a)

Correct shape, vertex on x-axis B1
(0, 5)or 5 on y-axis B1
($2^{1 / 2}, 0$) or $21 / 2$ on x-axis
(b) $2 x-5=x \Rightarrow x=5$
accept stated
$2 x-5=-x$ or equivalent M1
$x=1^{2} / 3$ accept exact equivalents A1
(c) Method for finding either coordinate of the lowest point
(differentiating and equating to zero, completing the square, using symmetry).
$x=3$ or $\mathrm{g}(x)=-9$ A1
$\mathrm{g}(x) \geq-9$
A1 3
(d) $\quad \mathrm{fg}(1)=\mathrm{f}(-5) \quad$ M1
$=15$
25. (a) $2+\frac{3}{x+2}\left(=\frac{2(x+2)+3}{x+2}\right) \quad \stackrel{\underline{\underline{2 x+7}} x \text { or } \frac{2(x+2)+3}{x+2}}{\underline{\underline{2 x+2}}}$ B1 1

$y=2+\frac{3}{x+2}$	$\underline{\text { OR }}$	$y=\frac{2 x+7}{x+2}$
$y-2=\frac{3}{x+2}$	$y(x+2)=2 x+7$	M1
$x+2=\frac{3}{y-2}$	$y x-2 x=7-2 y$	
$x=\frac{3}{y-2}-2$	$x=\frac{7-2 y}{y-2}$	M1
$\therefore \mathrm{f}-1(x)=\frac{3}{x-2}-2$	$\mathrm{f}^{-1}(x)=\frac{7-2 x}{x-2}$	o.e A1

Notes

M1 $y=\mathrm{f}(x)$ and $\underline{1}^{\text {st }}$ step towards $x=$
M1 One step from $x=$
A1 y or $\mathrm{f}^{-1}(x)=$ in terms of x.
$\begin{array}{ll}\text { (c) } \begin{array}{l}\text { Domain of } \mathrm{f}^{-1}(x) \text { is } \\ {[\mathrm{NB} x \neq+2]}\end{array} & x \in \mathbb{R}, x \neq 2\end{array} \quad$ B1 1
26. (a)

B1

B1 ft
$(4 a, 0) \&(-4 a, 0)$ and shape at $(0,0)$
B1 3
(b) $\mathrm{f}(2 a)=(2 a)^{2}-4 a(2 a)=4 a^{2}-8 a^{2}=-4 a^{2}$
$\mathrm{f}(-2 a)[=\mathrm{f}(2 a)(\because$ even function $)]=\underline{-4 a^{2}}$
B1 ft 2
B1 ft their f(2a)

```
(c) \(\quad a=3\) and \(f(x)=45 \Rightarrow 45=x^{2}-12 x \quad(x>0)\)
    \(0=x^{2}-12 x-45\)
    \(0=(x-15)(x+3)\)
        M1
    \(x=15(\) or -3\()\)
\(\therefore\) Solutions are \(\underline{x= \pm 15}\) only
M1 Attempt 3TQ in \(x\)
M1 Attempt to solve
A1 At least \(x=15\) can ignore \(x=-3\)
A1 To get final A1 must make clear only answers are \(\pm 15\).
```

27. (a)

V shape right way up
vertex in first quadrant
g
(b) $4 x+a=(a-x)+a$
$5 x=a, \quad x=\frac{a}{5}$
$y=\frac{9 a}{5}$

both correct

(c) $\operatorname{fg}(x)=|4 x+a-a|+a=|4 x|+a$
(d) $|4 x|+a=3 a \Rightarrow|4 x|=2 a$ M1 A1 2

$$
x=\frac{a}{2},-\frac{a}{2}
$$

28. (a) $x^{2}-2 x+3=(x-1)^{2}+2$

Full method to establish min. f

$$
\begin{array}{ll}
f(4)=3^{2}+2=11 & f \geq 2 \\
& f \leq 11
\end{array}
$$

penalise once for x or $<$
(b) $f(2)=3$; $\therefore 16=\operatorname{gf}(2) \Rightarrow 16=3 \lambda+1$ B1; M1
M for using their $f(2)$ for eqn
$\therefore \lambda=5$
ft their genuine f(2)
A1 ft 3
[6]
29. (a)

Translation in \leftarrow or $\rightarrow \quad$ B1 Points correct B2/1/0
(-1 eeoo) [Don't insist on graph for $x<-1$ and is more $x>2$]
(b)

$\begin{array}{ll}x<2 \text { including points } & \text { B1 } \\ x>2 \text { correct reflection } & \text { B1 }\end{array}$
cusp at $(2,0)($ not $\cup)$
B1

correct shape $x \geq 0$
B1
symmetry in y-axis
B1
correct maxima
B1
correct x intercepts
B1

Fully correct (b) and (c) wrong way aroubnd B2
30. (a)

V graph with 'vertex' on x-axis
$\left\{-\frac{1}{2} a,(0)\right\}$ and $\{(0), a\}$ seen

(c) Meet where $\frac{1}{x}=|2 x+a| \Rightarrow x|2 x+a|-1=0$; only one meet
(a)

Correct graph (could be separate)
(d) $2 x^{2}+x-1$

Attempt to solve; $x=\frac{1}{2}$ (no other value)

B1
M1; A1 3
A1 2

B1 1

B1 1
31. (a)

shape B1
intersections with axes $(c, 0),(0, d)$
(b)

shape B1
x intersection $\left(\frac{1}{2} d, 0\right) \quad$ B1
$\begin{array}{lll}y \text { intersection }(0,3 c) & \text { B1 } 3\end{array}$
(c) (i) $c=2$ B1
(ii) $\quad-1<\mathrm{f}(x) \leq$ (candidate's) c value

B1 B1 ft 3
(d) $3\left(2^{-x}\right)=1 \Rightarrow 2^{-x}=\frac{1}{3}$ and take logs; $-x=\frac{\ln \frac{1}{3}}{\ln 2}$

M1; A1
$d($ or $x)=1.585$ (3 decimal places)
A1 3
(e) $\operatorname{fg}(x)=\mathrm{f}\left[\log _{2} x\right]=\left[3\left(2^{-\log _{2} x}\right)-1\right] ;=\left[3\left(2^{\log _{2} \frac{1}{x}}\right)-1\right]$ or $\frac{3}{2^{\log _{2} x}}-1 \quad$ M1; A1
$=\frac{3}{x}-1$
A1 3
32. (a) $y=\mathrm{f}(x)$

(b) Drawing line $y=\frac{x+4}{4}$ or an analytical complete method for 2 roots (or more)

M1 A1

$$
-4 ; \quad-\frac{4}{5}, \frac{4}{3}, \quad \frac{12}{5}
$$

B1; A2, 1, 0
33. (a) A is $(2,0) ; B$ is $\left(0, \mathrm{e}^{-2}-1\right)$
(b) $y=\mathrm{e}^{x-2}-1$

Change over x and $y, \quad x=\mathrm{e}^{y-2}-1 \quad$ M1
$y-2=\ln (x+1)$ M1
$y=2+\ln (x+1)$
$\mathrm{f}^{-1}: x / 2+\ln (x+1), x>-1$
(c) $\mathrm{f}(x)-x=0$ is equivalent to $\mathrm{e}^{x-2}-1-x=0$

Let $\mathrm{g}(x)=\mathrm{e}^{x-2}-1-x$
$g(3)=-1.28 \ldots$
$\mathrm{g}(4)=2.38 .$.
Sign change \Rightarrow root α
(d) $x_{n+1}=2+\ln \left(x_{n}+1\right), x_{1}=3.5 \quad$ M1
$x_{2}=3.5040774$ A1
$x_{3}=3.5049831$ A1
$x_{4}=3.5051841$
$x_{5}=3.5052288$
Needs convincing argument on 3 d.p. accuracy
Take 3.5053 and next iteration is reducing 3.50525... M1
Answer: 3.505 (3 d.p.) A1 5
34. (a) $\mathrm{f}^{-1}(x)=\frac{1}{2} x, x \in \mathbb{R}$ B1 B1 2
(b) $\mathrm{gf}^{-1}(x)=\mathrm{g}\left(\frac{1}{2} x\right)=\frac{3}{4} x^{2}+2$ M1 A1 2
(c) Range $\mathrm{gf}^{-1}(x) \geq 2$ B1 1
35. (a)

$x<0$
B1 shape
$0<x<1$
B1 shape
$x>1$
B1 shape
B1 points
(b)

(c)

