1. (a)

M1 A1 2

Note

M1: V or or graph with vertex on the x-axis. A1: $\left(\frac{5}{2}, \{0\}\right)$ and $(\{0\}, 5)$ seen and the graph appears in both the first and second quadrants.

(b)
$$\frac{x = 20}{2x - 5} = -(15 + x)$$
; $\Rightarrow \underline{x = -\frac{10}{3}}$ B1
M1; A1 oe. 3

<u>Note</u>

M1: Either
$$2x - 5 = -(15 + x)$$
 or $-(2x - 5) = 15 + x$

(c)
$$fg(2) = f(-3) = |2(-3) - 5|; = |-11| = 11$$
 M1; A1 2

Note

M1: *Full method* of inserting g(2) into f(x) = |2x-5| or for inserting x = 2 into $\left| 2(x^2 - 4x + 1) - 5 \right|$. There must be evidence of the modulus being applied.

(d)
$$g(x) = x^2 - 4x + 1 = (x - 2)^2 - 4 + 1 = (x - 2)^2 - 3$$
. Hence $g_{min} = -3$ M1
Either $g_{min} = -3$ or $g(x) \ge -3$ B1
or $g(5) = 25 - 20 + 1 = 6$
 $-3 \le g(x) \le 6$ or $-3 \le y \le 6$ A1 3

Note

M1: **Full method** to establish the minimum of g. Eg: $(x \pm \alpha)^2 + \beta$ leading to $g_{min} = \beta$. Or for candidate to differentiate the quadratic, set the result equal to zero, find x and insert this value of x back into f(x) in order to find the minimum.

B1: For either finding the correct minimum value of g (can be implied by $g(x) \ge -3$ or g(x) > -3) or for stating that g(5) = 6A1: $-3 \le g(x) \le 6$ or $-3 \le y \le 6$ or $-3 \le g \le 6$. **Note that**: $-3 \le x \le 6$ is A0.

Note that: $-3 \le f(x) \le 6$ is A0. Note that: $-3 \ge g(x) \ge 6$ is A0. Note that: $g(x) \ge -3$ or g(x) > -3 or $x \ge -3$ or x > -3 with no working gains M1B1A0.

Note that for the final Accuracy Mark:

If a candidate writes down -3 < g(x) < 6 or -3 < y < 6, then award M1B1A0. If, however, a candidate writes down $g(x) \ge -3$, $g(x) \le 6$, then award A0. If a candidate writes down $g(x) \ge -3$ or $g(x) \le 6$, then award A0.

[10]

2. (a) (i)
$$(3,4)$$
 B1 B1

(ii) $(6,-8)$ B1 B1 4

B1 B1 B1

3

Note

B1: Correct shape for $x \ge 0$, with the curve meeting the positive y-axis and the turning point is found below the x-axis. (providing candidate does not copy the whole of the original curve and adds nothing else to their sketch.).

B1: Curve is symmetrical about the y-axis or correct shape of curve for x < 0. **Note**: The first two B1B1 can only be awarded if the curve has the correct shape, with a cusp on the positive y-axis and with both turning points located in the correct quadrants. Otherwise award B1B0.

B1: Correct turning points of (-3, -4) and (3, -4). Also, $(\{0\}, 5)$ is marked where the graph cuts through the y-axis. Allow (5, 0) rather than (0, 5) if marked in the "correct" place on the y-axis.

(c)
$$f(x) = (x-3)^2 - 4$$
 or $f(x) = x^2 - 6x + 5$ M1 A1

Note

M1: Either states f(x) in the form $(x \pm \alpha)^2 \pm \beta$; $\alpha, \beta \neq 0$

Or uses a complete method on $f(x) = x^2 + ax + b$, with f(0) = 5 and f(3) = -4 to find both a and b.

A1: Either $(x-3)^2 - 4$ or $x^2 - 6x + 5$

(d) Either: The function f is a many-one {mapping}. B1 1
Or: The function f is not a one-one {mapping}.

Note

B1: Or: The inverse is a one-many {mapping and not a function}.

Or: Because f(0) = 5 and also f(6) = 5.

Or: One *y*-coordinate has 2 corresponding *x*-coordinates {and therefore cannot have an inverse}.

[10]

2

 $3. y=\ln|x|$

Right-hand branch in quadrants 4 and 1. Correct shape.

Left-hand branch in quadrants 2 and 3. Correct shape. B1

Completely correct sketch and both $(-1,\{0\})$ and $(1,\{0\})$

B1 3

[3]

B1

4. (i) y = f(-x) + 1

Shape of and must have a maximum in quadrant

2 and a minimum in quadrant 1 or on the positive y-axis.

Either ($\{0\}$, 2) or A'(-2, 4)

Both $(\{0\}, 2)$ and A'(-2, 4)

B1 B1

3

B1

Any translation of the original curve.

The $translated\ maximum$ has either x-coordinate of 0 (can

be implied) or *y*-coordinate of 6.

The translated curve has maximum ($\{0\}$, 6) and is in the correct position on the Cartesian axes.

B1 3

B1

Shape of with a minimum in quadrant 2 and a maximum in quadrant 1.

Either $(\{0\}, 2)$ or A'(1, 6)

Both $(\{0\}, 2)$ and A'(1, 6)

B1

B1

B1 3

[9]

5. (i) (a)
$$ln(3x-7) = 5$$

$$e^{\ln(3x-7)} = e^5$$
 Takes e of both sides of the equation.

$$3x - 7 = e^5$$
. M1

$$3x - 7 = e^5 \Longrightarrow$$

$$x = \frac{e^5 + 7}{3} \{ = 51.804... \}$$

Exact answer of
$$\frac{e^5+7}{3}$$
.

M1

(b)
$$3^x e^{7x+2} = 15$$

$$\ln (3^x e^{7x+2}) = \ln 15$$
 Takes $\ln (\text{or logs})$ of both sides of the equation. M1

$$\ln 3^x + \ln e^{7x+2} = \ln 15$$
 Applies the addition law of logarithms.

$$x \ln 3 + 7x + 2 = \ln 15$$
 $x \ln 3 + 7x + 2 = \ln 15$ A1 oe

$$x(\ln 3 + 7) = -2 + \ln 15$$
 Factorising out at least two x terms on one side and collecting number

$$x = \frac{-2 + \ln 15}{7 + \ln 3} \{= 0.0874...\}$$
 Exact answer of

$$\frac{-2 + \ln 15}{7 + \ln 3}$$
 A1 oe 5

(ii) (a)
$$f(x) = e^{2x} + 3, x \in \square$$

 $y = e^{2x} + 3 \Rightarrow y - 3 = e^{2x}$ Attempt to make x (or swapped y) the subject M1
 $\Rightarrow \ln (y - 3) = 2x$
 $\Rightarrow \frac{1}{2} \ln y - 3 = x$ Makes e^{2x} the subject and takes $\ln of$ both sides M1
Hence $f^{-1}(x) = \frac{1}{2} \ln(x - 3)$ $\frac{1}{2} \ln(x - 3)$ or $\frac{\ln \sqrt{(x - 3)}}{(\text{see appendix})}$ or $\frac{f^{-1}(x) : \text{Domain: } x > 3}{(\text{see appendix})}$ $\frac{\text{A1 cao}}{\text{Cao}}$ Either $\frac{x > 3}{3}$ or $\frac{(3, \infty)}{3}$ B1 4

(b)
$$g(x)=\ln(x-1), x \in \square$$
, $x > 1$

$$fg(x) = e^{2\ln(x-1)} + 3$$
 $\{=(x-1)^2 + 3\}$
An attempt to put function g into function f . M1
$$e^{2\ln(x-1)} + 3 \text{ or } (x-1)^2 + 3 \text{ or } x^2 - 2x + 4. \quad \text{A1 isw}$$

$$fg(x) : \text{Range: } \underline{y > 3}$$

$$\text{or } \underline{(3, \infty)}$$
Either $\underline{y > 3}$ or $\underline{(3, \infty)}$ or $\underline{\text{Range} > 3}$ or $\underline{fg(x) > 3}$. B1 3

[15]

6. (a)

Curve retains shape

when $x > \frac{1}{2} \ln k$

Curve reflects through the *x*-axis when $x > \frac{1}{2} \ln k$

(0, k-1) and $(\frac{1}{2} \ln k, 0)$ marked in the correct positions.

B1

B1

B1 3

(b)

Correct shape of curve. The curve should be contained in quadrants 1, 2 and 3 (Ignore asymptote)

(1-k,0) and $(0,\frac{1}{2}\ln k)$

B1

2 B1

(c) Range of f: $\underline{f(x)} > -\underline{k}$ or $\underline{y} > -\underline{k}$ or $(-\underline{k}, \infty)$ Either $\underline{f(x)} > -\underline{k}$

or $\underline{y > -k}$ or $\underline{(-k, \infty)}$ or $\underline{f > -k}$ or Range > -k.

B1

1

(d)
$$y = e^{2x} - k \implies y + k = e^{2x}$$

 $\implies \ln(y + k) = 2x$
 $\implies \frac{1}{2}\ln(y + k) = x$

Hence $f^{-1}(x) = \frac{1}{2} \ln(x+k)$

Attempt to make x (or swapped y) the subject M1 Makes e^{2x} the subject and M1 takes ln of both sides

$$\frac{1}{2}\ln(x+k)$$
 or $\ln\sqrt{(x+k)}$ A1 cao 3

(e)
$$f^{-1}(x)$$
: Domain: $\underline{x > -k}$ or $\underline{(-k,\infty)}$ Either $\underline{x > -k}$ or $\underline{(-k,\infty)}$ or Domain $> -k$ or x "ft one sided inequality" their part (c)

RANGE answer 1

[10]

7. (a)

Shape

(3, 6)

(7, 0)

B1

B1ft

B1

B1 3

(b)

Shape

B1

[6]

$$g(x) \ge 1$$

(b)
$$fg(x) = f(e^{x^2}) = 3e^{x^2} + \ln e^{x^2}$$

$$=x^2+3e^{x^2}$$
 *

M1

A1

$$(fg: x \mapsto x^2 + 3e^{x^2})$$

fg $(x) \ge 3$

(d)
$$\frac{d}{dx}(x^2 + 3e^{x^2}) = 2x + 6xe^{x^2}$$

$$2x + 6xe^{x^2} = x^2e^{x^2} + 2x$$

$$e^{x^2}(6x - x^2) = 0$$

M1 A1

$$e^{x^2} \neq 0, \qquad 6x - x^2 = 0$$

$$6x - x^2 = 0$$

$$x = 0, 6$$

[10]

9. (a)

Vertices correctly placed

B1

В1 2

(b)

Vertex and intersections with axes correctly placed

B1

B1 2

R:(1,0)

B1

B1 **B**1 3

(d)
$$x > -1$$
; $2 - x - 1 = \frac{1}{2}x$

Leading to $x = \frac{2}{3}$

M1A1

Leading to
$$x = \frac{2}{3}$$

A1

$$x < -1$$
; $2 + x + 1 = \frac{1}{2}x$

M1

Leading to
$$x = -6$$

A1 5

[12]

10. (a)
$$x^2 - 2x - 3 = (x - 3)(x + 1)$$
 B1

$$f(x) = \frac{2(x - 1) - (x + 1)}{(x - 3)(x + 1)} \left(\text{or } \frac{2(x - 1)}{(x - 3)(x + 1)} - \frac{x + 1}{(x - 3)(x + 1)} \right)$$
 M1A1

$$= \frac{x - 3}{(x - 3)(x + 1)} = \frac{1}{x + 1} *$$
 cso A1 4

(b)
$$\left(0,\frac{1}{4}\right)$$

Accept
$$0 < y < \frac{1}{4}$$
, $0 < f(x) < \frac{1}{4}$ etc.

2

(c) Let
$$y = f(x)$$

$$y = \frac{1}{x+1}$$
$$x = \frac{1}{y+1}$$

$$yx + x = 1$$

$$y = \frac{1 - x}{x}$$

or
$$\frac{1}{x}-1$$

M1A1

$$f^{-1}(x) = \frac{1-x}{x}$$

Domain of
$$f^{-1}$$
 is $\left(0, \frac{1}{4}\right)$

ft their part (b)

B1ft

3

3

(d)
$$fg(x) = \frac{1}{2x^2 - 3 + 1}$$

$$\frac{1}{2x^2 - 2} = \frac{1}{8}$$

$$x^2 = 5$$

$$x = \pm \sqrt{5}$$

M1

$$x^2 = 5$$

both

A1**A**1

[12]

11. (a)

Shape

 $(5, \bar{4})$

(-5, 4)

B1

В1

B1 3

(b) For the purpose of marking this paper, the graph is identical to (a)

Shape

(5, 4)

B1 В1

(-5, 4)

В1

3

General shape – unchanged

Translation to left

(4, 8)

(-6, -8)

B1

B1

B1 B1

4

2

4

In all parts of this question ignore any drawing outside the domains shown in the diagrams above.

[10]

12. (a)
$$x = 1 - 2y^3 \Rightarrow y = \left(\frac{1 - x}{2}\right)^{\frac{1}{3}} \text{ or } \sqrt[3]{\frac{1 - x}{2}}$$

$$f^{-1}: x \mapsto \left(\frac{1 - x}{2}\right)^{\frac{1}{3}}$$

Ignore domain

(b)
$$gf(x) = \frac{3}{1-2x^3} - 4$$

$$=\frac{3-4(1-2x^3)}{1-2x^3}$$

$$=\frac{8x^3-1}{1-2x^3} \ (*)$$

$$gf: x \mapsto \frac{8x^3 - 1}{1 - 2x^3}$$

M1A1

M1A1

A1

M1

Ignore domain

(c)
$$8x^3 - 1 = 0$$

 $x = \frac{1}{2}$

Attempting solution of numerator = 0

Correct answer and no additional answers

A1 2

(d)
$$\frac{dy}{dx} = \frac{(1 - 2x^3) \times 24x^2 + (8x^3 - 1) \times 6x^2}{(1 - 2x^3)^2}$$
 M1A1

$$=\frac{18x^2}{(1-2x^3)^2}$$
 A1

Solving their numerator = 0 and substituting to find y. M1
$$x = 0, y = -1$$
 A1 5

13. (a) Finding
$$g(4) = k$$
 and $f(k) = ...$ or $fg(x) = \ln\left(\frac{4}{x-3} - 1\right)$ M1
$$[f(2) = \ln(2x^2 - 1) \qquad fg(4) = \ln(4 - 1)] = \ln 3$$
 A1 2

(b)
$$y = \ln(2x - 1) \Rightarrow e^y = 2x - 1 \text{ or } e^x = 2y - 1$$
 M1, A1

$$f^{-1}(x) = \frac{1}{2}(e^x + 1) \text{ Allow } y = \frac{1}{2}(e^x + 1)$$
 A1
Domain $x \in \mathbb{R}$ [Allow \mathbb{R} all reals, $(-\infty, \infty)$] independent B1 4

Shape, and x-axis should appear to be asymptote

Equation x = 3 needed, may see in diagram (ignore others)

B1 ind.

Intercept $(0, \frac{2}{3})$ no other; accept $y = \frac{2}{3}$ (0.67) or on graph

B1 ind

(d)
$$\frac{2}{x-3} = 3 \Rightarrow x = 3\frac{2}{3}$$
 or exact equiv. B1
 $\frac{2}{x-3} = -3, \Rightarrow x = 2\frac{1}{3}$ or exact equiv. M1, A1 3
Note: $2 = 3(x+3)$ or $2 = 3(-x-3)$ o.e. is M0A0

Alt: Squaring to quadratic $(9x^2 - 54x + 77 = 0)$ and solving M1; B1A1

3

[13]

14. (a)
$$y = \ln(4 - 2x)$$

 $e^y = 4 - 2x$ leading to $x = 2 - \frac{1}{2}e^y$ Changing subject and removing ln M1 A1

$$y = 2 - \frac{1}{2}e^x \Rightarrow f^{-1} \mapsto 2 - \frac{1}{2}e^x *$$

cso

A1

Domain of
$$f^{-1}$$
 is \square

B1

(b) Range of
$$f^{-1}$$
 is $f^{-1}(x) < 2$ (and $f^{-1}(x) \in \square$)

B1 1

4

Shape

B1

1.5

B1

 $\ln 4 \\
y = 2$

B1 B1

(d)
$$x_1 \approx -0.3704, x_2 \approx -0.3452$$

can

B1, B1 2

4

If more than 4 dp given in this part a maximum on one mark is lost. Penalise on the first occasion.

(e)
$$x_3 = -0.35403019...$$

$$x_4 = -0.35092688...$$

$$x_5 = -0.352 \ 01761...$$

$$x_6 = -0.35163386...$$
 Calculating to at least x_6 to at least four dp

M1

$$k$$
≈ -0.352

cao

A1

2

Alternative

$$k \approx -0.352$$

Found in any way

Let
$$g(x) = x + \frac{1}{2}e^x$$

$$g(-0.3515)\approx +0.0003,\,g(-0.3525)\approx -0.001$$

M1

Change of sign (and continuity)
$$\Rightarrow k \in (-0.3525, -0.3515)$$

$$\Rightarrow k = -0.352$$
 (to 3 dp)

A1 2

[13]

15. (a)

Mod graph, reflect for y < 0(0, 2), (3, 0) or marked on axes Correct shape, including cusp

A1 A1 3

M1

(b)

Attempt at reflection in y = xCurvature correct (-2, 0), (0, 3) or equiv. M1

A1

B1 3

(c)

Attempt at 'stretches' (0, -1) or equiv.

M1

B1

(1, 0)

B1 3

[9]

16. (a)

Log graph: Shape

B1

Intersection with -ve x-axis

dB1

$$(0, \ln k), (1 - k, 0)$$

B1

Mod graph :V shape, vertex on +ve *x*-axis

B1

$$(0, k)$$
 and $\left(\frac{k}{2}, 0\right)$

B1 5

(b)
$$f(x) \in \mathbb{R}$$
 , $-\infty < f(x) < \infty$, $\infty < y < \infty$

B1 1

(c)
$$\operatorname{fg}\left(\frac{k}{4}\right) = \ln\left\{k + \left|\frac{24}{4} - k\right|\right\}$$
 or $\operatorname{f}\left(\left|-\frac{k}{2}\right|\right)$

M1

$$= \ln{(\frac{3k}{2})}$$

A1 2

(d)
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{x+k}$$

B1

Equating (with
$$x = 3$$
) to grad. of line; $\frac{1}{3+k} = \frac{2}{9}$

M1: A1

$$k = 1\frac{1}{2}$$

A1ft

4

[12]

17. (a)

B1 Shape B1 Point

2

(b)

B1 Shape B1 Point

2

(c)

B1 Shape > 0B1 Point x < 0B1 Point

(-2, 4)3

18.

(a)
$$gf(x) = e^{2(2x + \ln 2)}$$

= $e^{4x}e^{2 \ln 2}$
= $e^{4x}e^{\ln 4}$
= $4e^{4x}$ **AG**

M1

M1

M1

A1 4 [7]

(b)

B1 shape & (0, 4) 1

1

[10]

(c)
$$gf(x) > 0$$
 B1

(d)
$$\frac{d}{dx}gf(x) = 16e^{4x}$$
 M1

$$e^{4x} = \frac{3}{16}$$
 M1 attempt to solve

$$4x = \ln\frac{3}{16}$$
 A1

$$x = -0.418$$
 A1 4

19. (a)
$$f(x) = \frac{5x+1}{(x+2)(x-1)} - \frac{3}{x+2}$$

factors of quadratic denominator

$$= \frac{5x+1-3(x-1)}{(x+2)(x-1)}$$

$$= \frac{2x+4}{(x+2)(x-1)} = \frac{2(x+2)}{(x+2)(x-1)} = \frac{2}{x-1} \text{ AG}$$
 Alcso 4

(b)
$$y = \frac{2}{x-1} \Rightarrow xy - y = 2 \Rightarrow$$
 M1

$$xy = 2 + y$$
 or $x - 1 = \frac{2}{y}$ A1

$$f^{-1}(x) = \frac{2+x}{x} \text{ or equiv.}$$
 A1 3

(c)
$$fg(x) = \frac{2}{x^2 + 4}$$
 (attempt) $[\frac{2}{"g"-1}]$

M1

Setting
$$\frac{2}{x^2+4} = \frac{1}{4}$$
 and finding $x^2 = ...; x = \pm 2$

DM1; A1 3

[10]

20. (a)

Translation \leftarrow by 1 Intercepts correct

M1

A1 2

(b)

(c)

 $x \ge 0$, correct "shape" [provided not just original] Reflection in *y*-axis Intercepts correct

B1

B1ft B1

3

a = -2, b = -1

B1B1 2

(d) Intersection of y = 5x with y = -x - 1

M1A1

Solving to give $x = -\frac{1}{6}$

M1A1 4

[11]

21. (a)

Reflected in x-axis 0 < x < 1Cusp + coords Clear curve going correct way Ignore curve x < 0 M1

A1 2

General shaped and -2 (1/2, 0)Ignore curve x < 0 B1

B1 2

Rough reflection in y = x(0,1) or 1 on y-axis (-2, 0) or -2 on x-axis and no curve x < -2 B1

B1

B1 3

[7]

22. (a)
$$I = 3x + 2e^x$$

B1

Using limits correctly to give 1 + 2e. (c.a.o.)

M1 A1 3

must subst 0 and 1 and subtract

(b)
$$A = (0, 5);$$

B1

$$y = 5$$

$$\frac{dy}{dx} = 2e^x$$

В1

4

Equation of tangent:
$$y = 2x + 5$$
; $c = -2.5$

M1; A1

attempting to find eq. of tangent and subst in y = 0, must be linear equation

(c)
$$y = \frac{5x+2}{x+4} \Rightarrow yx+4y = 5x+2 \Rightarrow 4y-2 = 5x-xy$$

M1; A1

putting y = and att. to rearrange to find x.

$$g^{-1}(x) = \frac{4x - 2}{5 - x}$$
 or equivalent

A1 3

2

must be in terms of x

(d)
$$gf(0) = g(5); =3$$

M1; A1

att to put 0 into f and then their answer into g

[12]

23. (a)
$$\frac{2x+5}{x+3} - \frac{1}{(x+3)(x+2)} = \frac{(2x+5)(x+2)-1}{(x+3)(x+2)}$$

$$= \frac{2x^2+9x+9}{(x+3)(x+2)}$$

$$= \frac{(2x+3)(x+3)}{(x+3)(x+2)}$$

$$= \frac{2x+3}{x+2}$$
A1 5

(b)
$$2 - \frac{1}{x+2} = \frac{2(x+2)-1}{x+2} = \frac{2x+3}{x+2}$$
 or the reverse

M1 A1 2

(c)	T_1 : Translation of -2 in x direction	B1	
	T_2 : Reflection in the x-axis	B1	
	T_3 : Translation of (+)2 in y direction	B1	
	All three fully correct	B1	4

[11]

One alternative is

 T_1 : Translation of -2 in x direction

 T_2 : Rotation of 90° clockwise about O

 T_3 : Translation of -2 in x direction

(b)
$$2x - 5 = x \Rightarrow x = 5$$
 M1 A1
accept stated
$$2x - 5 = -x \text{ or equivalent}$$
 M1
 $x = 1^2/_3$ accept exact equivalents A1 4

(c) Method for finding either coordinate of the lowest point M1 (differentiating and equating to zero, completing the square, using symmetry).

$$x = 3 \text{ or } g(x) = -9$$
 A1
 $g(x) \ge -9$ A1 3

(d)
$$fg(1) = f(-5)$$
 M1
= 15 A1 2

25. (a)
$$2 + \frac{3}{x+2} \left(= \frac{2(x+2)+3}{x+2} \right) = \frac{2x+7}{x+2} \text{ or } \frac{2(x+2)+3}{x+2}$$
 B1 1

(b)
$$y = 2 + \frac{3}{x+2}$$

$$\underline{OR} \qquad \qquad y = \frac{2x+7}{x+2}$$

$$y-2=\frac{3}{x+2}$$

$$y\left(x+2\right)=2x+7$$

M1

$$x+2 = \frac{3}{y-2}$$

$$yx -2x = 7 - 2y$$
$$x (y - 2) = 7 - 2y$$

$$x = \frac{3}{y-2} - 2$$

$$x = \frac{7 - 2y}{y - 2}$$

:.
$$f^{-1}(x) = \frac{3}{x-2} - 2$$

$$f^{-1}\left(x\right) = \frac{7 - 2x}{x - 2}$$

3 o.e A1

Notes

y = f(x) and $\underline{1}^{st}$ step towards x =One step from x =M1

M1

y or $f^{-1}(x) = \text{in terms of } x$. **A**1

(c) Domain of
$$f^{-1}(x)$$
 is $x \in \mathbb{R}, x \neq 2$
[NB $x \neq +2$]

B1 1

[5]

26. (a)

B1

B1 ft

B1 3

(b)
$$f(2a) = (2a)^2 - 4a(2a) = 4a^2 - 8a^2 = -4a^2$$

 $f(-2a) [= f(2a) \ (\because even function) \] = -4a^2$
B1 ft their $f(2a)$

B1

B1 ft 2

(c)
$$a = 3$$
 and $f(x) = 45 \Rightarrow 45 = x^2 - 12x$ $(x > 0)$ M1
 $0 = x^2 - 12x - 45$
 $0 = (x - 15)(x + 3)$ M1

$$x = 15 \text{ (or } -3)$$
 A1
 \therefore Solutions are $x = \pm 15$ only A1

 $\therefore \text{ Solutions are } \underline{x = \pm 15} \qquad \underline{\text{only}}$ M1 Attempt 3TQ in x

M1 Attempt to solve

A1 At least x = 15 can ignore x = -3

A1 To get final A1 must make clear <u>only</u> answers are ± 15 .

[9]

4

27. (a)

V shape right way up
vertex in first quadrant
g
B1
B1
B1

-1 eeoo; 2a, a, $-\frac{a}{4}$ B2 (1, 0) 5

(b)
$$4x + a = (a - x) + a$$
 M1
 $5x = a, \quad x = \frac{a}{5}$ M1

$$y = \frac{9a}{5}$$
 A1 3

both correct

(c)
$$fg(x) = |4x + a - a| + a = |4x| + a$$
 M1 A1 2

(d)
$$|4x| + a = 3a \Rightarrow |4x| = 2a$$
 M1
 $x = \frac{a}{2}, -\frac{a}{2}$ A1, A1 3

[13]

28.

(a)
$$x^2 - 2x + 3 = (x - 1)^2 + 2$$

M1

 $Full\ method\ to\ establish\ min.\ f$

$$f(4) = 3^2 + 2 = 11$$

$$f \ge 2$$

$$f \le 11$$

A1

penalise once for x or <

f(2) = 3; (b)

$$\therefore 16 = gf(2) \implies 16 = 3\lambda + 1$$

B1; M1

M for using their f(2) for eqn

 $\therefore \ \underline{\lambda = 5}$

A1 ft

3

ft their genuine f(2)

[6]

29. (a)

Translation in \leftarrow or \rightarrow

Points correct

B1

B2/1/03

(*-1 eeoo*)

[Don't insist on graph for x < -1 and is more x > 2]

(b)

x < 2 including points

B1

x > 2 correct reflection

B1

B1

cusp at (2, 0) (not \cup)

3

correct shape $x \ge 0$	B1	
symmetry in y-axis	B1	
correct maxima	B1	
correct x intercepts	B1	4

Fully correct (b) and (c) wrong way aroubnd B2

[10]

30. (a)

V graph with 'vertex' on x-axis

M1

 $\{-\frac{1}{2}a, (0)\}$ and $\{(0), a\}$ seen

A1 2

Correct graph (could be separate)

B1 1

(c) Meet where
$$\frac{1}{x} = |2x + a| \Rightarrow x|2x + a| - 1 = 0$$
; only one meet

B1

1

(d)
$$2x^2 + x - 1$$

B1

Attempt to solve;
$$x = \frac{1}{2}$$
 (no other value)

M1; A1 3

[7]

31. (a)

shape

B1

intersections with axes (c, 0), (0, d) B1 2

(b)

shape

B1

x intersection $(\frac{1}{2}d, 0)$

B1

y intersection (0, 3c)

B1 3

(c) (i) c = 2

B1

(ii) $-1 < f(x) \le \text{(candidate's) } c \text{ value}$

B1 B1 ft 3

M1; A1

(d)
$$3(2^{-x}) = 1 \Rightarrow 2^{-x} = \frac{1}{3}$$
 and take logs; $-x = \frac{\ln \frac{1}{3}}{\ln 2}$

d (or x) = 1.585 (3 decimal places)

A1 3

(e)
$$fg(x) = f[\log_2 x] = [3(2^{\log_2 x}) - 1]; = [3(2^{\log_2 \frac{1}{x}}) - 1] \text{ or } \frac{3}{2^{\log_2 x}} - 1$$
 M1; A1

$$=\frac{3}{x}-1$$

A1 3

[14]

32. (a) y = f(x)

(b) Drawing line $y = \frac{x+4}{4}$ or an analytical complete method for

2 roots (or more)

M1 A1

$$-4; \quad -\frac{4}{5}, \quad \frac{4}{3}, \quad \frac{12}{5}$$

B1; A2, 1, 0

[9]

33. (a) A is
$$(2, 0)$$
; B is $(0, e^{-2} - 1)$

B1; B1 2

5

(b)
$$y = e^{x-2} - 1$$

Change over x and y, $x = e^{y-2} - 1$

M1

$$y - 2 = \ln(x + 1)$$

M1

$$y = 2 + \ln(x + 1)$$

A1

$$f^{-1}: x/2 + \ln(x+1), x > -1$$

A1 A1 5

(c)
$$f(x) - x = 0$$
 is equivalent to $e^{x-2} - 1 - x = 0$

Let
$$g(x) = e^{x-2} - 1 - x$$

$$g(3) = -1.28...$$

$$g(4) = 2.38...$$

Sign change \Rightarrow root α

M1 A1

(d)
$$x_{n+1} = 2 + \ln(x_n + 1), x_1 = 3.5$$
 M1
 $x_2 = 3.5040774$ A1
 $x_3 = 3.5049831$ A1
 $x_4 = 3.5051841$
 $x_5 = 3.5052288$
Needs convincing argument on 3 d.p. accuracy
Take 3.5053 and next iteration is reducing 3.50525... M1
Answer: 3.505 (3 d.p.) A1 5

34. (a)
$$f^{-1}(x) = \frac{1}{2}x$$
, $x \in \mathbb{R}$ B1 B1 2
(b) $gf^{-1}(x) = g(\frac{1}{2}x) = \frac{3}{4}x^2 + 2$ M1 A1 2
(c) Range $gf^{-1}(x) \ge 2$ B1 1

35. (a)

4

x < 0

B1 shape

0 < x < 1

B1 shape

x > 1

B1 shape

B1 points

M1any translation

M1 correct direction, translation

B1 points

B1 asymptotes

4

B1 points

B1 asymptotes

[12]