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though of course it would bring us no nearer to turning

the conjecture into a theorem.

In this article we have seen only a glimpse of the

modern theory of arithmetic geometry, and perhaps I

have overemphasizedmathematicians’ successes at the

expense of the much larger territory of questions, like

Lang’s conjecture above, about which we remain wholly

ignorant. At this stage in the history of mathematics,

we can confidently say that the schemes attached to

Diophantine problems have geometry. What remains

is to say as much as we can about what this geom-

etry is like, and in this respect, despite the progress

described here, our understanding is still quite unsat-

isfactory when compared with our knowledge of more

classical geometric situations.
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IV.6 Algebraic Topology

Burt Totaro

Introduction

Topology is concerned with the properties of a geomet-

ric shape that are unchanged when we continuously

deform it. In more technical terms, topology tries to

classify topological spaces [III.90], where two spaces

are considered the same if they are homeomorphic.

Algebraic topology assigns numbers to a topological

space, which can be thought of as the “number of holes”

in that space. These holes can be used to show that

two spaces are not homeomorphic: if they have differ-

ent numbers of holes of some kind, then one cannot

be a continuous deformation of the other. In the happi-

est cases, we can hope to show the converse statement:

that two spaces with the same number of holes (in some

precise sense) are homeomorphic.

Topology is a relatively new branch of mathematics,

with its origins in the nineteenth century. Before that,

mathematics usually sought to solve problems exactly:

to solve an equation, to find the path of a falling body,

to compute the probability that a game of dice will

lead to bankruptcy. As the complexity of mathemati-

cal problems grew, it became clear that most problems

would never be solved by an exact formula: a classic

example is the problem, known as the three-body

problem [V.33], of computing the future movements

of Earth, the Sun, and the Moon under the influence of

gravity. Topology allows the possibility of making qual-

itative predictions when quantitative ones are impossi-

ble. For example, a simple topological fact is that a trip

from New York to Montevideo must cross the equator

at some point, although we cannot say exactly where.

1 Connectedness and Intersection Numbers

Perhaps the simplest topological property is one called

connectedness. This can be defined in various ways, as

we shall see in a moment, but once we have a notion of

what it means for a space to be connected we can then

divide a topological space up into connected pieces,

called components. The number of these pieces is a sim-

ple but useful invariant [I.4 §2.2]: if two spaces have

different numbers of connected components, then they

are not homeomorphic.

For nice topological spaces, the different definitions

of connectedness are equivalent. However, they can be

generalized to give ways of measuring the number of

holes in a space; these generalizations are interestingly

different and all of them are important.

The first interpretation of connectedness uses the

notion of a path, which is defined to be a continuous

mapping f from the unit interval [0,1] to a given space

X. (We think of f as a path from f (0) to f (1).) Let us

declare two points of X to be equivalent if there is a

path from one to the other. The set of equivalence

classes [I.2 §2.3] is called the set of path components

of X and is written π0(X). This is a very natural way of

defining the “number of connected pieces” into which

X breaks up. One can generalize this notion by con-

sidering mappings into X from other standard spaces

such as spheres: this leads to the notion of homotopy

groups, which will be the topic of section 2.

A different way of thinking about connectedness is

based on functions from X to the real line rather than

functions from a line segment into X. Let us assume

that we are in a situation where it makes sense to dif-

ferentiate functions on X. For example, X could be an

open subset of some Euclidean space, or more gener-

ally a smooth manifold [I.3 §6.9]. Consider all the real-

valued functions on X whose derivative is everywhere

equal to zero: these functions form a real vector space

[I.3 §2.3], which we call H0(X, R) (the “zeroth cohom-

ology group of X with real coefficients”). Calculus tells

us that if a function defined on an interval has deriva-

tive zero, then it must be constant, but that is not true
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when the domain has several connected pieces: all we

can say then is that the function is constant on each

connected piece of X. The number of degrees of free-

dom of such a function is therefore equal to the num-

ber of connected pieces, so the dimension of the vector

space H0(X, R) is another way to describe the number

of connected components of X. This is the simplest

example of a cohomology group. Cohomology will be

discussed in section 4.

We can use the idea of connectedness to prove a seri-

ous theorem of algebra: every real polynomial of odd

degree has a real root. For example, there must be some

real number x such that x3 + 3x − 4 = 0. The basic

observation is that when x is a large positive number

or a highly negative number, the termx3 ismuch bigger

(in absolute value) than the other terms of the polyno-

mial. Since this top term is an odd power of x, we have

f (x) > 0 for some positive number x and f (x) < 0 for

some negative number x. If f were never equal to zero,

then it would be a continuous mapping from the real

line into the real line minus the origin. But the real line

is connected, while the real line minus the origin has

two connected components, the positive and negative

numbers. It is easy to show that a continuousmap from

a connected space X to another space Y must map X

into just one connected component of Y : in our case,

this contradicts the fact that f takes both positive and

negative values. Therefore f must be equal to zero at

some point, and the proof is complete.

This argument can be phrased in terms of the “inter-

mediate value theorem” of calculus, which is indeed

one of the most basic topological theorems. An equiv-

alent reformulation of this theorem states that a con-

tinuous curve that goes from the lower half-plane to

the upper half-plane must cross the horizontal axis at

some point. This idea leads to intersection numbers,

one of the most useful concepts in topology. Let M

be a smooth oriented manifold. (Roughly speaking, a

manifold is oriented if you cannot continuously slide

a shape about inside it and end up with a reflection

of that shape. The simplest nonoriented manifold is a

Möbius strip: to reflect a shape, slide it around the strip

an odd number of times.) Let A and B be two closed

oriented submanifolds of M with dimensions adding

up to the dimension of M . Finally, suppose that A and

B intersect transversely, so that their intersection has

the “correct” dimension, namely 0, and is therefore a

collection of separated points.

Now let p be one of these points. There is a way of

assigning a weight of +1 or −1 to p, which depends
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Figure 1 Intersection numbers:

(a) A · B = 1; (b) A · C = −1.
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Figure 2 Moving a submanifold.

in a natural way on the relationship between the ori-

entations of A, B, and M (see figure 1). For example,

if M is a sphere, A is the equator of M , B is a closed

curve, and appropriate directions are given to A and

B, then the weight of p will tell you whether B crosses

A upwards or downwards at p. If A and B intersect in

only finitely many points, then we can define the inter-

section number of A and B, written A ·B, to be the sum

of the weights (+1 or −1) at all the intersection points.

In particular, this will happen if M is compact [III.9]

(that is, we can think of it as a closed bounded subset

of R
N for some N).

The important point about the intersection number

is that it is an invariant, in the following sense: if you

move A and B about in a continuous way, ending up

with another pair of transverse submanifolds A� and
B�, then the intersection number A� · B� is the same as

A · B, even though the number of intersection points

can change. To see why this might be true, consider

again the case where A and B are curves and M is two

dimensional: if A and B meet at a point with weight

1, we can wiggle one of them to turn that point into

three points with weights 1, −1, and 1, but the total

contribution to the intersection number is unchanged.

This is illustrated in figure 2. As a result, the intersec-

tion number A ·B is defined for any two submanifolds

of complementary dimension: if they do not intersect

transversely, one can move them until they do and use

the definition we have just given.

In particular, if two submanifolds have nonzero inter-

section number, then they can never be moved to
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Figure 3 A surface bounded by a knot.

be disjoint from each other. This is another way to

describe the earlier arguments about connectedness.

It is easy to write down one curve from New York to

Montevideo whose intersection number with the equa-

tor is equal to 1. Therefore, nomatter howwemove that

curve (provided that we keep the endpoints fixed: more

generally, if either A or B has a boundary, then that

boundary should be kept fixed), its intersection num-

ber with the equator will always be 1, and in particular

it must meet the equator in at least one point.

One of many applications of intersection numbers in

topology is the idea of linking numbers, which comes

from knot theory [III.44]. A knot is a path in space that

begins and ends at the same point, or, more formally, a

closed connected one-dimensional submanifold of R
3.

Given any knot K, it is always possible to find a surface

S in R
3 with K as its boundary (see figure 3). Now let L

be a knot that is disjoint from K. The linking number

of K with L is defined to be the intersection number

of L with the surface S. The properties of intersection

numbers imply that if the linking number of K with L

is nonzero, then the knots K and L are “linked,” in the

sense that it is impossible to pull them apart.

2 Homotopy Groups

If we remove the origin from the plane R
2, then we

obtain a new space that is different from the plane in a

fundamental way: it has a hole in it. However, we cannot

detect this difference by counting components, since

both the plane and the plane without the origin are con-

nected. We begin this section by defining an invariant

called the fundamental group, which does detect this

kind of hole.

As a first approximation, one could say that the ele-

ments of the fundamental group of a space X are loops,

which can be formally defined as continuous functions

f from [0,1] to X such that f (0) = f (1). However,

this is not quite accurate, for two reasons. The first

reason, which is extremely important, is that two loops

B

X

X X

A

B

X

A

Figure 4 Multiplication in the fundamental

group and in higher homotopy groups.

are regarded as equivalent if one can be continuously

deformed to the other while all the time staying inside

X. If this is the case, we say that they are homotopic. To

be more formal about this, let us suppose that f0 and

f1 are two loops. Then a homotopy between f0 and f1
is a collection of loops fs in X, one for each s between

0 and 1, such that the function F(s, t) = fs(t) is a con-

tinuous function from [0,1]2 to X. Thus, as s increases

from 0 to 1, the loop fs moves continuously from f0 to

f1. If two loops are homotopic, then we count them as

the same. So the elements of the homotopy group are

not actually loops but equivalence classes, or homotopy

classes, of loops.

Even this is not quite correct, because for technical

reasons we need to impose an extra condition on our

loops: that they all start from (and therefore end at)

a given point, called the base point. If X is connected,

it turns out not to matter what this base point is, but

we need it to be the same for all loops. The reason for

this is that it gives us a way to multiply two loops: if x

is the base point and A and B are two loops that start

and end at x, then we can define a new loop by going

around A and then going around B. This is illustrated

in figure 4. We regard this new loop as the product of

the loopsA and B. It is not hard to check that the homo-

topy class of this product depends only on the homo-

topy classes of A and B, and that the resulting binary

operation turns the set of homotopy classes of loops

into a group [I.3 §2.1]. It is this group that we call the

fundamental group of X. It is denoted π1(X).

The fundamental group can be computed for most of

the spaces we are likely to encounter. This makes it an

important way to distinguish one space from another.

First of all, for anyn the fundamental group of R
n is the

trivial group with just one element, because any loop in

R
n can be continuously shrunk to its base point. On the

other hand, the fundamental group ofR
2\{0}, the plane

with the origin removed, is isomorphic to the group Z

of the integers. This tells us that we can associate with

any loop in R
2 \ {0} an integer that does not change
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if we modify the loop in a continuous way. This inte-

ger is known as the winding number. Intuitively, the

winding number measures the total number of times

that the mapping goes around the origin, with coun-

terclockwise circuits counting positively and clockwise

ones negatively. Since the fundamental group ofR
2\{0}

is not the trivial group, R
2 \ {0} cannot be homeomor-

phic to the plane. (It is an interesting exercise to try to

find an elementary proof of this result—that is, a proof

that does not use, or implicitly reconstruct, any of the

machinery of algebraic topology. Such proofs do exist,

but it is tricky to find them.)

A classic application of the fundamental group is

to prove the fundamental theorem of algebra

[V.13], which states that every nonconstant polyno-

mial with complex coefficients has a complex root. (The

proof is sketched in the article just cited, though the

fundamental group is not explicitly mentioned there.)

The fundamental group tells us about the number

of “one-dimensional holes” that a space has. A basic

example is given by the circle, which has fundamental

group Z, just as R
2 \ {0} does, and for essentially the

same reason: given a path in the circle that begins and

ends at the same point, we can see how many times it

goes around the circle. In the next section we shall see

some more examples.

Before we think about higher-dimensional holes, we

first need to discuss one of themost important topolog-

ical spaces: the n-dimensional sphere. For any natural

number n, this is defined to be the set of points in R
n+1

at distance 1 from the origin. It is denoted Sn. Thus, the

0-sphere S0 consists of two points, the 1-sphere S1 is

the circle, and the 2-sphere S2 is the usual sphere, like

the surface of Earth. Higher-dimensional spheres take a

little bit of getting used to, but we can work with them

in the same way that we can with lower-dimensional

spheres. For example, we can construct the 2-sphere

from a closed two-dimensional disk by identifying all

the points on the boundary circle with each other. In

the sameway, the 3-sphere can be obtained from a solid

three-dimensional ball by identifying all the points on

the boundary 2-sphere. A related picture is to think

of the 3-sphere as being obtained from our familiar

three-dimensional space R
3 by adding one point “at

infinity.”

Now let us think about the familiar sphere S2. This

has trivial fundamental group, since any loop drawn

on the sphere can be shrunk to a point. However, this

does not mean that the topology of S2 is trivial. It just

means that in order to detect its interesting properties

we need a different invariant. And it is possible to base

such an invariant on the observation that even if loops

can always be shrunk, there are othermaps that cannot.

Indeed, the sphere itself cannot be shrunk to a point.

To say this more formally, the identity map from the

sphere to itself is not homotopic to a map from the

sphere to just one point.

This idea leads to the notion of higher-dimensional

homotopy groups of a topological space X. The rough

idea is tomeasure the number of “n-dimensional holes”

in X, for any natural number n, by considering all the

continuous mappings from the n-sphere to X. We want

to see whether any of these spheres wrap around a hole

in X. Once again, we consider two mappings from Sn

to X to be equivalent if they are homotopic. And the

elements of the nth homotopy group πn(X) are again

defined to be the homotopy classes of these mappings.

Let f be a continuous map from [0,1] to X with

f (0) = f (1) = x. If we like we can turn the interval

[0,1] into the circle S1 by “identifying” the points 0

and 1: then f becomes a map from S1 to X, with one

specified point in S1 mapping tox. In order to be able to

define a group operation for mappings from a higher-

dimensional Sn, we similarly fix a point s in Sn and a

base point x in X and look just at maps that send s

to x.

Let A and B be two continuous mappings from Sn to

X with this property. The “product” mapping A·B from

Sn to X is defined as follows. First “pinch” the equator

of Sn down to a point. When n = 1, the equator con-

sists of just two points and the result is a figure eight.

Similarly, for general n, we end up with two copies of

Sn that touch each other, one made out of the northern

hemisphere and one out of the southern hemisphere of

the original unpinched copy of Sn. We now use the map

A to map the bottom half into X and the map B to map

the top half into X, with the equator mapping to the

base point x. (For both halves, the pinched equator is

playing the part of the point s.)

As in the one-dimensional case, this operation makes

the set πn(X) into a group, and this group is the nth

homotopy group of the space X. One can think of it

as measuring how many “n-dimensional holes” a space

has.

These groups are the beginning of “algebraic” topol-

ogy: starting from any topological space, we construct

an algebraic object, in this case a group. If two spaces

are homeomorphic, then their fundamental groups

(and higher homotopy groups) must be isomorphic.

This is richer than the original idea of just measuring
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the number of holes, since a group contains more

information than just a number.

Any continuous function from Sn intoR
m can be con-

tinuously shrunk to a point in a straightforward way.

This shows that all the higher homotopy groups of R
m

are also trivial, which is a precise formulation of the

vague idea that R
m has no holes.

Under certain circumstances one can show that two

different topological spaces X and Y must have the

same number of holes of all types. This is clearly true if

X and Y are homeomorphic, but it is also true if X and

Y are equivalent in a weaker sense, known as homotopy

equivalence. Let X and Y be topological spaces and let

f0 and f1 be continuous maps from X to Y . A homo-

topy from f0 to f1 is defined more or less as it was for

spheres: it is a continuous family of continuous maps

from X to Y that starts with f0 and ends with f1. As

then, if such a homotopy exists, we say that f0 and f1

are homotopic. Next, a homotopy equivalence from a

space X to a space Y is a continuous map f : X → Y

such that there is another continuous map g : Y → X

with the property that the composition g ◦f : X → X is

homotopic to the identity map on X, and f ◦g : Y → Y

is homotopic to the identitymap on Y . (Notice that if we

replaced the word “homotopic” with “equal,” we would

obtain the definition of a homeomorphism.) When there

is a homotopy equivalence from X to Y , we say that X

and Y are homotopy equivalent, and also that X and Y

have the same homotopy type.

A good example is when X is the unit circle and Y

is the plane with the origin removed. We have already

observed that these have the same fundamental group,

and commented that it was “for essentially the same

reason.” Now we can be more precise. Let f : X → Y

be the map that takes (x, y) to (x, y) (where the first

(x, y) belongs to the circle and the second to the plane).

Let g : Y → X be the map that takes (u, v) to
�

u√
u2 + v2

,
v√

u2 + v2

�

.

(Note thatu2+v2 is never zero because the origin is not

contained in Y .) Then g ◦ f is easily seen to equal the

identity on the unit circle, so it is certainly homotopic to

the identity. As for f ◦g, it is given by the same formula

as g itself. More geometrically, it takes the points on

each radial line to the point where that line intersects

the unit circle. It is not hard to show that this map is

homotopic to the identity on Y . (The basic idea is to

“shrink the radial lines down” to the points where they

intersect the circle.)

Figure 5 Some spaces that are

homotopy equivalent to the circle.

Very roughly speaking, two spaces are homotopy

equivalent if they have the same number of holes of

all types. This is a more flexible notion of “having the

same shape” than the notion of homeomorphism. For

example, Euclidean spaces of different dimensions are

not homeomorphic to each other, but they are all homo-

topy equivalent. Indeed, they are all homotopy equiv-

alent to a point: such spaces are called contractible,

and one thinks of them as the spaces that have no

hole of any sort. The circle is not contractible, but it

is homotopy equivalent to many other natural spaces:

the plane R
2 minus the origin (as we have seen), the

cylinder S1 × R, the compact cylinder S1 × [0,1], and

even the Möbius strip (see figure 5). Most invariants

in algebraic topology (such as homotopy groups and

cohomology groups) are the same for any two spaces

that are homotopy equivalent. Thus, knowing that the

fundamental group of the circle is isomorphic to the

integers tells us that the same is true for the various

homotopy equivalent spaces just mentioned. Roughly

speaking, this says that all these spaces have “one basic

one-dimensional hole.”

3 Calculations of the Fundamental Group

and Higher Homotopy Groups

To give some more feeling for the fundamental group,

let us review what we already know and look at a

few more examples. The fundamental group of the

2-sphere, or indeed of any higher-dimensional sphere,

is trivial. The two-dimensional torus S1×S1 has funda-

mental group Z
2 = Z×Z. Thus, a loop in the torus deter-

mines two integers, which measure how many times it

winds around in the meridian direction and how many

in the longitudinal direction.

The fundamental group can also be non-Abelian; that

is, we can have ab ≠ ba for some elements a and b

of the fundamental group. The simplest example is a

space X built out of two circles that meet at a sin-

gle point (see figure 6). The fundamental group of X

is the free group [IV.10§2] on two generators a and
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a b

Figure 6 One-point union of two circles.
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Figure 7 Proof that π2 of any space is Abelian.

b. Roughly speaking, an element of this group is any

product you can write down using the generators and

their inverses, such as abaab−1a, except that if a and

a−1 or b and b−1 appear next to each other, you cancel

them first. (So instead of abb−1bab−1 one would sim-

ply write abab−1, for example.) The generators corre-

spond to loops around each of the two circles. The free

group is in a sense the most highly non-Abelian group.

In particular, ab is not equal to ba, which in topolog-

ical terms tells us that going around loop a and then

loop b in the space X is not homotopic to the loop that

goes around loop b and then loop a.

This space may seem somewhat artificial, but it is

homotopy equivalent to the plane with two points

removed, which appears in many contexts. More gener-

ally, the fundamental group of the plane with d points

removed is the free group on d generators: this is a pre-

cise sense in which the fundamental group measures

the number of holes.

In contrast with the fundamental group, the higher

homotopy groups πn(X) are Abelian when n is at least

2. Figure 7 gives a “proof without words” in the case

n = 2, the proof being the same for any larger n. In

the figure, we view the 2-sphere as the square with its

boundary identified to a point. So any elements A and

B of π2(X) are represented by continuous maps of the

square to X that map the boundary of the square to

the base point x. The figure exhibits (several steps of)

a homotopy from AB to BA, with the shaded regions

and the boundary of the square all mapping to the

base point x. The picture is reminiscent of the sim-

plest nontrivial braid, in which one string is twisted

around another; this is the beginning of a deep con-

nection between algebraic topology and braid groups

[III.4].

The fundamental group is especially powerful in low

dimensions. For example, every compact connected

surface (or two-dimensional manifold) is homeomor-

phic to one of those on a standard list (see differen-

tial topology [IV.7 §2.3]), and we compute that all the

manifolds on this list have different (nonisomorphic)

fundamental groups. So, when you capture a closed sur-

face in the wild, computing its fundamental group tells

you exactly where it fits in the classification. Moreover,

the geometric properties of the surface are closely tied

to its fundamental group. The surfaces with a rieman-

nian metric [I.3 §6.10] of positive curvature [III.13]

(the 2-sphere and real projective plane [I.3 §6.7]) are

exactly the surfaces with finite fundamental group; the

surfaces with a metric of curvature zero (the torus and

Klein bottle) are exactly the surfaces with a fundamen-

tal group that is infinite but “almost Abelian” (there is

an Abelian subgroup of finite index); and the remaining

surfaces, those that have ametric of negative curvature,

have “highly non-Abelian” fundamental group, like the

free group (see figure 8).

After more than a century of studying three-dimen-

sional manifolds, we now know, thanks to the advances

of Thurston and Perelman, that the picture is almost

the same for these as it is for 2-manifolds: the fun-

damental group controls the geometric properties of

the 3-manifold almost completely (see differential

topology [IV.7 §2.4]). But this is completely untrue for

4-manifolds and in higher dimensions: there are many

different simply connected manifolds, meaning mani-

folds with trivial fundamental group, andwe needmore

invariants to be able to distinguish between them. (To

begin with, the 4-sphere S4 and the product S2 × S2

are both simply connected. More generally, we can take

the connected sum of any number of copies of S2×S2,

obtained by removing 4-balls from these manifolds and

identifying the boundary 3-spheres. These 4-manifolds

are all simply connected, and yet no two of them are

homeomorphic or even homotopy equivalent.)

An obvious way in which we might try to distinguish

different spaces is to use higher homotopy groups, and

indeed this works in simple cases. For example, π2 of

the connected sum of r copies of S2 × S2 is isomor-

phic to Z
2r . Also, we can show that the sphere Sn of

any dimension is not contractible (although it is simply

connected for n � 2) by computing that πn(Sn) is iso-

morphic to the integers (rather than the trivial group).

Thus, each continuous map from the n-sphere to itself

determines an integer, called the degree of the map,
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Sphere One-holed torus Two-holed torus

. . .

Figure 8 A sphere, a torus, and a surface of genus 2.

which generalizes the notion of winding number for

maps from the circle to itself.

In general, however, the homotopy groups are not a

practical way of distinguishing one space from another,

because they are amazingly hard to compute. A first

hint of this was Hopf’s 1931 discovery that π3(S2) is

isomorphic to the integers: it is clear that the 2-sphere

has a two-dimensional hole, as measured by π2(S2) �
Z, but in what sense does it have a three-dimensional

hole? This does not correspond to our naive view of

what such a hole should be. The problem of com-

puting the homotopy groups of spheres turns out to

be one of the hardest in all of mathematics: some of

what we know is shown in table 1, but despite massive

efforts the homotopy groups πi(S2), for example, are

known only for i � 64. There are tantalizing patterns in

these calculations, with a number-theoretic flavor, but

it seems impossible to formulate a precise guess for

the homotopy groups of spheres in general. And com-

puting the homotopy groups for spaces more complex

than spheres is even more complicated.

To get an idea of the difficulties involved, let us define

the so-called Hopf map from S3 to S2, which turns out

to represent a nonzero element of π3(S2). There are

in fact several equivalent definitions. One of them is to

regard a point (x1, x2, x3, x4) in S3 as a pair of complex

numbers (z1, z2) such that |z1|2 + |z2|2 = 1. This we

do by setting z1 = x1 + ix2 and z2 = x3 + ix4. We then

map the pair (z1, z2) to the complex number z1/z2.

This may not look like a map to S2, but it is because

z2 may be zero, so in fact the image of the map is not C

but the Riemann sphere C∪∞, which can be identified

with S2 in a natural way.

Another way of defining the Hopf map is to regard

points (x1, x2, x3, x4) in S3 as unit quaternions. In the

article on quaternions in this volume [III.76], it is shown

that each unit quaternion can be associated with a rota-

tion of the sphere. If we fix some point s in the sphere

and map each unit quaternion to the image of s under

the associated rotation, then we get a map from S3 to

S2 that is homotopic to the map defined in the previous

paragraph.

The Hopf map is an important construction, and will

reappear more than once later in this article.

4 Homology Groups and

the Cohomology Ring

Homotopy groups, then, can be rather mysterious and

very hard to calculate. Fortunately, there is a different

way to measure the number of holes in a topological

space: homology and cohomology groups. The defini-

tions are more subtle than the definition of homotopy

groups, but the groups turn out to be easier to compute

and are for this reason much more commonly used.

Recall that elements of the nth homotopy group

πn(X) of a topological space X are represented by

continuous maps from the n-sphere to X. Let X be a

manifold, for simplicity. There are two key differences

between homotopy groups and homology groups. The

first is that the basic objects of homology are more

general than n-dimensional spheres: every closed ori-

ented n-dimensional submanifold A of X determines

an element of the nth homology group of X, Hn(X).

This might make homology groups seem much big-

ger than homotopy groups, but that is not the case,

because of the second major difference between homo-

topy and homology. As with homotopy, the elements of

the homology groups are not the submanifolds them-

selves but equivalence classes of submanifolds, but

the definition of the equivalence relation for homol-

ogy makes it much easier for two of these submani-

folds to be equivalent than it is for two spheres to be

homotopic.

We shall not give a formal definition of homology, but

here are some examples that convey some of its flavor.

Let X be the plane with the origin removed and let A be

a circle that goes around the origin. If we continuously

deform this circle, we will obtain a new curve that is

homotopic to the original circle, but with homology we

can do more. For instance, we can start with a continu-

ous deformation that causes two of its points to touch

and turns it into a figure eight. One half of this figure

eight will have to contain the origin, but we can leave
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Table 1 The first few homotopy groups of spheres.

S1 S2 S3 S4 S5 S6 S7 S8 S9

π1 Z 0 0 0 0 0 0 0 0

π2 0 Z 0 0 0 0 0 0 0

π3 0 Z Z 0 0 0 0 0 0

π4 0 Z/2 Z/2 Z 0 0 0 0 0

π5 0 Z/2 Z/2 Z/2 Z 0 0 0 0

π6 0 Z/4× Z/3 Z/4× Z/3 Z/2 Z/2 Z 0 0 0

π7 0 Z/2 Z/2 Z× Z/4× Z/3 Z/2 Z/2 Z 0 0

π8 0 Z/2 Z/2 Z/2× Z/2 Z/8× Z/3 Z/2 Z/2 Z 0

π9 0 Z/3 Z/3 Z/2× Z/2 Z/2 Z/8× Z/3 Z/2 Z/2 Z

π10 0 Z/3× Z/5 Z/3× Z/5 Z/8× Z/3× Z/3 Z/2 0 Z/8× Z/3 Z/2 Z/2

A

Figure 9 The circle A represents zero

in the homology of the surface.

that still and slide the other part away. The result is

then two closed curves, with the origin inside one and

outside the other. This pair of curves, which together

form a 1-manifold with two components, is equivalent

to the original circle. It can be seen as a continuous

deformation of a more general kind.

A second example shows how natural it is to include

other manifolds in the definition of homology. This

time let X be R
3 with a circle removed, and let A be a

sphere that contains the circle in its interior. Suppose

that the circle is in the XY -plane and that both it and

the sphere A are centered at the origin. Then we can

pinch the top and bottom of A toward the origin until

they just touch. If we do so, then we obtain a shape

that looks like a torus, except that the hole in the mid-

dle has been shrunk to zero. But we can open up this

hole with the help of a further continuous deformation

and obtain a genuine torus, which is a “tube” around

the original circle. From the point of view of homology,

this torus is equivalent to the sphere A.

A more general rule is that if X is a manifold and B is

a compact oriented (n+ 1)-dimensional submanifold

of X with a boundary, then this boundary ∂B will be

equivalent to zero (which is the same as saying that

[∂B] = 0 in Hn(X)): see figure 9.

The group operation is easy to define: if A and B are

two disjoint submanifolds of X, giving rise to homol-

ogy classes [A] and [B], then [A] + [B] is the homol-

ogy class of [A ∪ B]. (More generally, the definition of

homology allows us to add up any collection of sub-

manifolds, whether or not they overlap.) Here are some

simple examples of homology groups, which, unlike

the fundamental group, are always Abelian. The homol-

ogy groups of a sphere, Hi(Sn), are isomorphic to the

integers Z for i = 0 and for i = n, and 0 otherwise.

This contrasts with the complicated homotopy groups

of the sphere, and better reflects the naive idea that

the n-sphere has one n-dimensional hole and no other

holes. Note that the fundamental group of the circle,

the group of integers, is the same as its first homology

group. More generally, for any path-connected space,

the first homology group is always the “Abelianization”

of the fundamental group (which is formally defined to

be its largest Abelian quotient). For example, the funda-

mental group of the plane with two points removed is

the free group on two generators, while the first homol-

ogy group is the free Abelian group on two generators,

or Z
2.

The homology groups of the two-dimensional torus

Hi(S1×S1) are isomorphic to Z for i = 0, to Z
2 for i = 1,

and to Z for i = 2. All of this has geometric meaning.

The zeroth homology group of any space is isomorphic

to Z
r for a space X with r connected components. So

the fact that the zeroth homology group of the torus is

isomorphic to Z means that the torus is connected. Any

closed loop in the torus determines an element of the

first homology group Z
2, which measures how many

times the loop winds around the meridian and longitu-

dinal directions of the torus. And finally, the homology

of the torus in dimension 2 is isomorphic to Z because

the torus is a closed orientable manifold. That tells us

that the whole torus defines an element of the second

homology group of the torus, which is in fact a gen-

erator of that group. By contrast, the homotopy group
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π2(S1 × S1) is the trivial group: there are no interest-

ing maps from the 2-sphere to the 2-torus, but homol-

ogy shows that there are interesting maps from other

closed 2-manifolds to the 2-torus.

As we have mentioned, calculating homology groups

is much easier than calculating homotopy groups. The

main reason for this is the existence of results that tell

you the homology groups of a space that is built up

from smaller pieces in terms of the homology groups of

those pieces and their intersections. Another important

property of homology groups is that they are “functo-

rial” in the sense that a continuous map f from a space

X to a space Y leads in a natural way to a homomor-

phism f∗ from Hi(X) to Hi(Y ) for each i: f∗([A]) is

defined to be [f (A)]. In other words, f∗([A]) is the

equivalence class of the image of A under f .

We can define the closely related idea of “cohom-

ology” simply by a different numbering. Let X be

a closed oriented n-dimensional manifold. Then we

define the ith cohomology group Hi(X) to be the

homology group Hn−i(X). Thus, one way to write down

a cohomology class (an element of Hi(X)) is by choos-

ing a closed oriented submanifold S of codimension i

in X. (This means that the dimension of S is n− i.) We

write [S] for the corresponding cohomology class.

Formore general spaces thanmanifolds, cohomology

is not just a simple renumbering of homology. Infor-

mally, if X is a topological space, then we think of an

element of Hi(X) as being represented by a codimen-

sion-i subspace of X that can move around freely in

X. For example, suppose that f is a continuous map

from X to an i-dimensional manifold. If X is a manifold

and f is sufficiently “well-behaved,” then the inverse

image of a “typical” point in the manifold will be an i-

codimensional submanifold of X, and as we move the

point about, this submanifold will vary continuously,

and will do so in a way that is similar to the way that a

circle became two circles and a sphere became a torus

earlier. IfX is amore general topological space, themap

f still determines a cohomology class in Hi(X), which

we think of as being represented by the inverse image

in X of any point in the manifold.

However, even when X is an oriented n-dimensional

manifold, cohomology has distinct advantages over

homology. This may seem odd, since the cohomology

groups are the homology groups with different names.

However, this renumbering allows us to give very useful

extra algebraic structure to the cohomology groups of

X: not only canwe add cohomology classes, we canmul-

tiply them as well. Furthermore, we can do so in such a

A

A�

B

A

B�B

Figure 10 A2 = A ·A� = 0, A · B = [point],

and B2 = B · B� = 0.

way that, taken together, the cohomology groups of X

form a ring [III.81§1]. (Of course, we could do this for

the homology groups, but the cohomology groups form

a so-called graded ring. In particular, if [A] ∈ Hi(X)

and [B] ∈ Hj(X), then [A] · [B] ∈ Hi+j(X).)

The multiplication of cohomology classes has a rich

geometric meaning, especially on manifolds: it is given

by the intersection of two submanifolds. This gener-

alizes our discussion of intersection numbers in sec-

tion 1: there we considered zero-dimensional intersec-

tions of submanifolds, whereas we are now considering

(cohomology classes of) higher-dimensional intersec-

tions. To be precise, let S and T be closed oriented sub-

manifolds of X, of codimension i and j, respectively.

By moving S slightly (which does not change its class

in Hi(X)) we can assume that S and T intersect trans-

versely, which implies that the intersection of S and

T is a smooth submanifold of codimension i+ j in X.

Then the product of the cohomology classes [S] and

[T] is simply the cohomology class of the intersection

S ∩ T in Hi+j(X). (In addition, the submanifold S ∩ T

inherits an orientation from S, T , and X: this is needed

to define the associated cohomology class.)

As a result, to compute the cohomology ring of a

manifold, it is enough to specify a basis for the cohom-

ology groups (which, as we have already discussed, are

relatively easy to determine) using some submanifolds

and to see how these submanifolds intersect. For exam-

ple, we can compute the cohomology ring of the 2-

torus as shown in figure 10. For another example, it

is not hard to show that the cohomology of the com-

plex projective plane [III.72] CP
2 has a basis given

by three basic submanifolds: a point, which belongs

to H4(CP
2) because it is a submanifold of codimen-

sion 4; a complex projective line CP
1 = S2, which

belongs toH2(CP
2); and the wholemanifoldCP

2, which

is in H0(CP
2) and represents the identity element 1 of

the cohomology ring. The product in the cohomology

ring is described by saying that [CP
1][CP

1] = [point],

because any two distinct lines CP
1 in the plane meet

transversely in a single point.
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This calculation of the cohomology ring of the com-

plex projective plane, although very simple, has several

strong consequences. First of all, it implies Bézout’s

theorem on intersections of complex algebraic curves

(see algebraic geometry [IV.4 §6]). An algebraic curve

of degree d in CP
2 represents d times the class of a line

CP
1 in H2(CP

2). Therefore, if two algebraic curves D

and E of degrees d and e meet transversely, then the

cohomology class [D ∩ E] equals

[D] · [E] = (d[CP
1])(e[CP

1]) = de[point].

For complex submanifolds of a complex manifold,

intersection numbers are always+1, not−1, and so this
means that D and E meet in exactly de points.

We can also use the computation of the cohomology

ring of CP
2 to prove something about the homotopy

groups of spheres. It turns out that CP
2 can be con-

structed as the union of the 2-sphere and the closed

four-dimensional ball, with each point of the boundary

S3 of the ball identified with a point in S2 by the Hopf

map, which was defined in the previous section.

A constant map from one space to another, or a map

homotopic to a constant map, gives rise to the zero

homomorphism between the homology groups Hi, at

least when i > 0. The Hopf map f : S3 → S2 also

induces the zero homomorphism because the nonzero

homology groups of S3 and S2 are in different dimen-

sions. Nonetheless, we will show that f is not homo-

topic to the constant map. If it were, then the space

CP
2 obtained by attaching a 4-ball to the 2-sphere using

the map f would be homotopy equivalent to the space

obtained by attaching a 4-ball to the 2-sphere using a

constant map. The latter space Y is the union of S2 and

S4 identified at one point. But in fact Y is not homotopy

equivalent to the complex projective plane, because

their cohomology rings are not isomorphic. In partic-

ular, the product of any element of H2(Y ) with itself is

zero, unlike what happens in CP
2 where [CP

1][CP
1] =

[point]. Therefore f is nonzero in π3(S2). A more care-

ful version of this argument shows that π3(S2) is iso-

morphic to the integers, and the Hopf map f : S3 → S2

is a generator of this group.

This argument shows some of the rich relations

between all the basic concepts of algebraic topology:

homotopy groups, cohomology rings, manifolds, and

so on. To conclude, here is a way to visualize the non-

triviality of the Hopf map f : S3 → S2. Look at the sub-

set of S3 that maps to any given point of the 2-sphere.

These inverse images are all circles in the 3-sphere. To

draw them, we can use the fact that S3 minus a point

Figure 11 Fibers of the Hopf map.

is homeomorphic to R
3; so these inverse images form a

family of disjoint circles that fills up three-dimensional

space, with one circle being drawn as a line (the circle

through the point we removed from S3). The striking

feature of this picture is that any two of this huge fam-

ily of circles have linking number 1 with each other:

there is no way to pull any two of them apart (see

figure 11).

5 Vector Bundles and Characteristic Classes

We now introduce another major topological idea: fiber

bundles. If E and B are topological spaces, x is a point

in B, and p : E → B is a continuous map, then the fiber

of p over x is the subspace of E that maps to x. We

say that p is a fiber bundle, with fiber F , if every fiber

of p is homeomorphic to the same space F . We call B

the base space and E the total space. For example, any

product space B × F is a fiber bundle over B, called the

trivial F -bundle over B. (The continuous map in this

case is the map that takes (x, y) to x.) But there are

many nontrivial fiber bundles. For example, the Möbius

strip is a fiber bundle over the circle with fiber a closed

interval. This example helps to explain the old name

“twisted product” for fiber bundles. Another example:

the Hopf map makes the 3-sphere the total space of a

circle bundle over the 2-sphere.

Fiber bundles are a fundamental way to build up com-

plicated spaces from simple pieces. Wewill focus on the

most important special case: vector bundles. A vector

bundle over a space B is a fiber bundle p : E → B whose

fibers are all real vector spaces of some dimension n.
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Figure 12 Trivializations of the tangent

bundle for the circle and the torus.

This dimension is called the rank of the vector bun-

dle. A line bundle means a vector bundle of rank 1; for

example, we can view the Möbius strip (not including

its boundary) as a line bundle over the circle S1. It is a

nontrivial line bundle; that is, it is not isomorphic to the

trivial line bundle S1×R. (There are many ways of con-

structing it: one is to take the strip {(x, y) : 0 � x � 1}
and identify each point (0, y) with the point (1,−y).

The base space of this line bundle is the set of all points

(x,0), which is a circle since (0,0) and (1,0) have been

identified.)

IfM is a smoothmanifold of dimension n, its tangent

bundle TM → M is a vector bundle of rank n. We can

easily define this bundle by considering M as a sub-

manifold of some Euclidean space R
N . (Every smooth

manifold can be embedded into Euclidean space.) Then

TM is the subspace of M ×R
N of pairs (x, v) such that

the vector v is tangent to M at the point x; the map

TM → M sends a pair (x, v) to the point x. The fiber

over x then has the form of the set of all pairs (x, v)

with v belonging to an affine subspace of R
N of dimen-

sion equal to that of M . For any fiber bundle, a section

means a continuous map from the base space B to the

total space E that maps each point x in B to some point

in the fiber over x. A section of the tangent bundle of

a manifold is called a vector field. We can draw a vector

field on a given manifold by putting an arrow (possibly

of zero length) at every point of the manifold.

In order to classify smooth manifolds, it is impor-

tant to study their tangent bundles, and in particular

to see whether they are trivial or not. Some manifolds,

like the circle S1 and the torus S1 × S1, do have trivial

tangent bundle. The tangent bundle of an n-manifold

M is trivial if and only if we can find n vector fields that

are linearly independent at every point of M . So we can

prove that the tangent bundle is trivial just by writing

down such vector fields; see figure 12 for the circle or

the torus. But how can we show that the tangent bundle

of a given manifold is nontrivial?

Figure 13 The hairy ball theorem.

One way is to use intersection numbers. Let M be a

closed oriented n-manifold. We can identify M with the

image of the “zero-section” inside the tangent bundle

TM , the section that assigns to every point of M the

zero vector at that point. Since the dimension of TM is

precisely double that of M , the discussion of intersec-

tion numbers in section 1 gives a well-defined integer

M2 = M ·M , the self-intersection number of M inside

TM ; this is called the Euler characteristic χ(M). By the

definition of intersection numbers, for any vector field

v on M that meets the zero-section transversely, the

Euler characteristic ofM is equal to the number of zeros

of v , counted with signs.

As a result, if the Euler characteristic of M is not

zero, then every vector field on M must meet the zero-

section; in other words, every vector field on M must

equal zero somewhere. The simplest example occurs

when M is the 2-sphere S2. We can easily write down

a vector field (for example, the one pointing toward

the east along circles of latitude, which vanishes at

the north and south poles) whose intersection number

with the zero-section is 2. Therefore the 2-sphere has

Euler characteristic 2, and so every vector field on the

2-sphere must vanish somewhere. This is a famous the-

orem of topology known as the “hairy ball theorem”:

it is impossible to comb the hair on a coconut (see

figure 13).

This is the beginning of the theory of characteristic

classes, which measure how nontrivial a given vector

bundle is. There is no need to restrict ourselves to the

tangent bundle of a manifold. For any oriented vector

bundle E of rank n on a topological space X, we can

define a cohomology class χ(E) in Hn(X), the Euler

class, which vanishes if the bundle is trivial. Intuitively,

the Euler class of E is the cohomology class represented

by the zero set of a general section of E, which (for

example, if X is a manifold) should be a codimension-

n submanifold of X, since X has codimension n in E.

If X is a closed oriented n-manifold, then the Euler

class of the tangent bundle in Hn(X) = Z is the Euler

characteristic of X.
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One of the inspirations for the theory of characteris-

tic classes was the Gauss–Bonnet theorem, generalized

to all dimensions in the 1940s. The theorem expresses

the Euler characteristic of a closed manifold with a Rie-

mannian metric as the integral over the manifold of a

certain curvature function. More broadly, a central goal

of differential geometry is to understand how the geo-

metric properties of a Riemannian manifold such as its

curvature are related to the topology of the manifold.

The characteristic classes for complex vector bundles

(that is, bundles where the fibers are complex vector

spaces) turn out to be particularly convenient: indeed,

real vector bundles are often studied by constructing

the associated complex vector bundle. If E is a com-

plex vector bundle of rankn over a topological spaceX,

the Chern classes of E are a sequence c1(E), . . . , cn(E)

of cohomology classes on X, with ci(E) belonging to

H2i(X), which all vanish if the bundle is trivial. The

top Chern class, cn(E), is simply the Euler class of E:

thus, it is the first obstruction to finding a section of

E that is everywhere nonzero. The more general Chern

classes have a similar interpretation. For any 1 � j � n,

choose j general sections of E. The subset of X over

which these sections become linearly dependent will

have codimension 2(n+ 1− j) (assuming, for example,

that X is a manifold). The Chern class cn+1−j(E) is pre-

cisely the cohomology class of this subset. Thus the

Chern classes measure in a natural way the failure of a

given complex vector bundle to be trivial. The Pontrya-

gin classes of a real vector bundle are defined to be the

Chern classes of the associated complex vector bundle.

A triumph of differential topology is Sullivan’s 1977

theorem that there are only finitely many smooth

closed simply connected manifolds of dimension at

least 5 with any given homotopy type and given Pon-

tryagin classes of the tangent bundle. This statement

fails badly in dimension 4, as Donaldson discovered in

the 1980s (see differential topology [IV.7 §2.5]).

6 K-Theory and Generalized

Cohomology Theories

The effectiveness of vector bundles in geometry led to

a new way of measuring the “holes” in a topological

space X: looking at how many different vector bundles

over X there are. This idea gives a simple way to define

a cohomology-like ring associated to any space, known

as K-theory (after the German word “Klasse,” since the

theory involves equivalence classes of vector bundles).

It turns out that K-theory gives a very useful new angle

by which to look at topological spaces. Some problems

that could be solved only with enormous effort using

ordinary cohomology became easy with K-theory. The

idea was created in algebraic geometry by Grothendieck

in the 1950s and then brought into topology by Atiyah

and Hirzebruch in the 1960s.

The definition of K-theory can be given in a few lines.

For a topological space X, we define an Abelian group

K0(X), the K-theory of X, whose elements can be writ-

ten as formal differences [E]− [F], where E and F are

any two complex vector bundles over X. The only rela-

tionswe impose in this group are that [E⊕F] = [E]+[F]

for any two vector bundles E and F over X. Here E ⊕ F

denotes the direct sum of the two bundles; if Ex and Fx

denote the fibers at a given point x in X, the fiber of

E ⊕ F at x is simply Ex × Fx .

This simple definition leads to a rich theory. First of

all, the Abelian group K0(X) is in fact a ring: we mul-

tiply two vector bundles on X by forming the tensor

product [III.89]. In this respect, K-theory behaves like

ordinary cohomology. The analogy suggests that the

group K0(X) should form part of a whole sequence of

Abelian groups Ki(X), for integers i, and indeed these

groups can be defined. In particular, K−i(X) can be

defined as the subgroup of those elements ofK0(Si×X)

whose restriction to K0(point×X) is zero.

Then a miracle occurs: the groups Ki(X) turn out to

be periodic of order 2: Ki(X) = Ki+2(X) for all integers

i. This is a famous phenomenon known as Bott peri-

odicity. So there are really only two different K-groups

attached to any topological space: K0(X) and K1(X).

This may suggest that K-theory contains less infor-

mation than ordinary cohomology, but that is not so.

Neither K-theory nor ordinary cohomology determines

the other, although there are strong relations between

them. Each brings different aspects of the shape of a

space to the fore. Ordinary cohomology, with its num-

bering, shows fairly directly the way a space is built

up from pieces of different dimensions. K-theory, hav-

ing only two different groups, looks cruder at first (and

is often easier to compute as a result). But geometric

problems involving vector bundles often involve infor-

mation that is subtle and hard to extract from ordinary

cohomology, whereas this information is brought to the

surface by K-theory.

The basic relation between K-theory and ordinary

cohomology is that the group K0(X) constructed from

the vector bundles on X “knows” something about all

the even-dimensional cohomology groups of X. To be

precise, the rank of the Abelian group K0(X) is the sum
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of the ranks of all the even-dimensional cohomology

groups H2i(X). This connection comes from associat-

ing with a given vector bundle on X its Chern classes.

The odd K-group K1(X) is related in the same way to

the odd-dimensional ordinary cohomology.

As we have already hinted, the precise group K0(X),

as opposed to just its rank, is better adapted to some

geometric problems than ordinary cohomology. This

phenomenon shows the power of looking at geomet-

ric problems in terms of vector bundles, and thus ulti-

mately in terms of linear algebra. Among the classic

applications of K-theory is the proof, by Bott, Ker-

vaire, and Milnor, that the 0-sphere, the 1-sphere, the

3-sphere, and the 7-sphere are the only spheres whose

tangent bundles are trivial. This has a deep algebraic

consequence, in the spirit of the fundamental theorem

of algebra: the only dimensions in which there can be

a real division algebra (not assumed to be commuta-

tive or even associative) are 1, 2, 4, and 8. There are

indeed division algebras of all four types: the real num-

bers, complex numbers, quaternions, and octonions

(see quaternions, octonions, and normed division

algebras [III.76]).

Let us see why the existence of a real division alge-

bra of dimension n implies that the (n− 1)-sphere has

trivial tangent bundle. In fact, let usmerely assume that

we have a finite-dimensional real vector space V with a

bilinear map V × V → V , which we call the “product,”

such that if x and y are vectors in V with xy = 0,

then either x = 0 or y = 0. For convenience, let us

also assume that there is an identity element 1 in V ,

so 1 · x = x · 1 = x for all x ∈ V ; one can, how-

ever, do without this assumption. If V has dimension

n, then we can identify V with R
n. Then, for each point

x in the sphere Sn−1, left multiplication by x gives a

linear isomorphism from R
n to itself. By scaling the

output to have length 1, left multiplication by x gives

a diffeomorphism from Sn−1 to itself which maps the

point 1 (scaled to have length 1) to x. Taking the deriva-

tive of this diffeomorphism at the point 1 gives a lin-

ear isomorphism from the tangent space of the sphere

at the point 1 to the tangent space at x. Since the

point x on the sphere is arbitrary, a choice of basis for

the tangent space of the sphere at the point 1 deter-

mines a trivialization of the whole tangent bundle of

the (n− 1)-sphere.

Among other applications, K-theory provides the

best “explanation” for the low-dimensional homotopy

groups of spheres, and in particular for the number-

theoretic patterns that are seen there. Notably, denom-

inators of Bernoulli numbers appear among those

groups (such as πn+3(Sn) � Z/24 for n at least 5), and

this pattern was explained using K-theory by Milnor,

Kervaire, and Adams.

the atiyah–singer index theorem [V.2] provides

a deep analysis of linear differential equations on

closed manifolds using K-theory. The theorem has

made K-theory important for gauge theories and string

theories in physics. K-theory can also be defined for

noncommutative rings, and is in fact the central con-

cept in “noncommutative geometry” (see operator

algebras [IV.15§5]).

The success of K-theory led to a search for other

“generalized cohomology theories.” There is one other

theory that stands out for its power: complex cobor-

dism. The definition is very geometric: the complex

cobordism groups of a manifold M are generated by

mappings of manifolds (with a complex structure on

the tangent bundle) into M . The relations say that any

manifold counts as zero if it is the boundary of some

other manifold. For example, the union of two circles

would count as zero if you could find a cylinder whose

ends were those circles.

It turns out that complex cobordism is much richer

than either K-theory or ordinary cohomology. It sees

far into the structure of a topological space, but at

the cost of being difficult to compute. Over the past

thirty years, a whole series of cohomology theories,

such as elliptic cohomology and Morava K-theories,

have been constructed as “simplifications” of complex

cobordism: there is a constant tension in topology

between invariants that carry a lot of information and

invariants that are easy to compute. In one direction,

complex cobordism and its variants provide the most

powerful tool for the computation and understand-

ing of the homotopy groups of spheres. Beyond the

range where Bernoulli numbers appear, we see deeper

number theory such as modular forms [III.59]. In

another direction, the geometric definition of complex

cobordism makes it useful in algebraic geometry.

7 Conclusion

The line of thought introduced by pioneering topolo-

gists like riemann [VI.49] is simple but powerful. Try

to translate any problem, even a purely algebraic one,

into geometric terms. Then ignore the details of the

geometry and study the underlying shape or topology

of the problem. Finally, go back to the original prob-

lem and see how much has been gained. The funda-

mental topological ideas such as cohomology are used
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throughoutmathematics, from number theory to string

theory.

Further Reading

From the definition of topological spaces to the fun-

damental group and a little beyond, I like M. A. Arm-

strong’s Basic Topology (Springer, New York, 1983).

The current standard graduate textbook is A. Hatcher’s

Algebraic Topology (Cambridge University Press, Cam-

bridge, 2002). Two of the great topologists, Bott and

Milnor, are also brilliant writers. Every young topolo-

gist should read R. Bott and L. Tu’s Differential Forms

in Algebraic Topology (Springer, NewYork, 1982), J. Mil-

nor’s Morse Theory (Princeton University Press, Prince-

ton, NJ, 1963), and J. Milnor and J. Stasheff’s Character-

istic Classes (Princeton University Press, Princeton, NJ,

1974).

IV.7 Differential Topology

C. H. Taubes

1 Smooth Manifolds

This article is about classifying certain objects called

smoothmanifolds, so I need to start by telling you what

they are. A good example to keep in mind is the sur-

face of a smooth ball. If you look at a small portion of

it from very close up, then it looks like a portion of a

flat plane, but of course it differs in a radical way from

a flat plane on larger distance scales. This is a general

phenomenon: a smooth manifold can be very convo-

luted, but must be quite regular in close-up. This “local

regularity” is the condition that each point in a mani-

fold belongs to a neighborhood that looks like a portion

of standard Euclidean space in some dimension. If the

dimension in question is d for every point of the mani-

fold, then the manifold itself is said to have dimension

d. A schematic of this is shown in figure 1.

What does it mean to say that a neighborhood “looks

like a portion of standard Euclidean space”? It means

that there is a “nice” one-to-one map φ from the neigh-

borhood into R
d (with its usual notion of distance). One

can think of φ as “identifying” points in the neigh-

borhood with points in R
d: that is, x is identified

with φ(x). If we do this, then the function φ is called a

coordinate chart of the neighborhood, and any chosen

basis for the linear functions on the Euclidean space is

called a coordinate system. The reason for this is that

φ allows us to use the coordinates in R
d to label points

in the neighborhood: if x belongs to the neighborhood,

Figure 1 Small portions of a manifold

resemble regions in a Euclidean space.

Figure 2 A transition function from a rectangular

grid to a distorted rectangular grid.

then one can label it with the coordinates of φ(x). For

example, Europe is part of the surface of a sphere. A

typical map of Europe identifies each point in Europe

with a point in flat, two-dimensional Euclidean space,

that is, a square grid labeled with latitude and lon-

gitude. These two numbers give us a coordinate sys-

tem for the map, which can also be transferred to a

coordinate system for Europe itself.

Now, here is a straightforward but central observa-

tion. Suppose thatM andN are two neighborhoods that

intersect, and suppose that functions φ : M → R
d and

ψ : N → R
d are used to give them each a coordinate

chart. Then the intersection M ∩N is given two coordi-

nate charts, and this gives us an identification between

the open regions φ(M ∩N) and ψ(M ∩N) of R
d: given

a point x in the first region, the corresponding point

in the second is ψ(φ−1(x)). This composition of maps

is called a transition function, and it tells you how the

coordinates from one of the charts on the intersecting

region relate to those of the other. The transition func-

tion is a homeomorphism [III.90] between the regions

φ(M ∩N) and ψ(M ∩N).


