## 1 Marking scheme: Worksheet

1 Momentum $=$ mass $\times$ velocity
SI unit of momentum is $\mathrm{kg} \mathrm{m} \mathrm{s}^{-1}$.
2 Momentum is a vector quantity - it has both direction and magnitude.
If the initial momentum of the car is $+p$, then its final momentum must be $-p$ (see diagram).


Change in momentum, $\Delta p=$ final momentum - initial momentum
$\Delta p=-p-p=-2 p$ (the change is not zero)

3 a $\quad \Delta p=(2.0 \times 8.0)-(2.0 \times 4.0)$

$$
\begin{equation*}
\Delta p=+8.0 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} \tag{1}
\end{equation*}
$$

b $\quad \Delta p=(2.0 \times-4.0)-(2.0 \times 3.0)$
$\Delta p=-14 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
c $\quad \Delta p=(2.0 \times 8.0)-(2.0 \times-5.0)$
$\Delta p=+26 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
4 Momentum $=$ mass $\times$ velocity
Lorry: $p=m v=10 \times 10^{3} \times 20=2.0 \times 10^{5} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
Dust: $p=m v=1.5 \times 10^{-3} \times\left(20 \times 10^{3}\right)=30 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
The lorry has greater momentum.
5 a $v^{2}=u^{2}+2 a s ; u=0$
$v^{2}=0+(2 \times 9.81 \times 1.5)=29.43 \mathrm{~m}^{2} \mathrm{~s}^{-2}$
Hence, $v=\sqrt{29.43}=5.4249 \mathrm{~m} \mathrm{~s}^{-1} \approx 5.4 \mathrm{~m} \mathrm{~s}^{-1}$

$$
\text { Mulue th t } 2
$$

b Final speed of ball $=\frac{5.42}{2}=2.71 \mathrm{~m} \mathrm{~s}^{-1}$
$\Delta p=$ final momentum - initial momentum
$\Delta p=-(0.200 \times 2.71)-(0.200 \times 5.42)$
$\Delta p \approx 1.6 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} \quad$ (magnitude only)
6 a $p=m v=20 \times 180$
$p=3.6 \times 10^{3} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
b The momentum is conserved in this explosion. The momentum of the cannon is equal in magnitude but opposite in direction to that of the shell.
Momentum of the cannon $=3.6 \times 10^{3} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
c Using the answer from $\mathbf{b}$, we have:

$$
\begin{equation*}
850 \times V=3.6 \times 10^{3} \tag{1}
\end{equation*}
$$

$V=\frac{3.6 \times 10^{3}}{850}$
$V \approx 4.2 \mathrm{~m} \mathrm{~s}^{-1}$

7 a Initial momentum $=$ final momentum
$900 \times 28=(1500+900) \times V \quad(V=$ combined velocity $)$
$V=\frac{900 \times 28}{2400}$
$V=10.5 \mathrm{~m} \mathrm{~s}^{-1} \approx 11 \mathrm{~m} \mathrm{~s}^{-1}$
b Kinetic energy $=\frac{1}{2} m v^{2}$
initial kinetic energy $=\frac{1}{2} \times 900 \times 28^{2}=3.53 \times 10^{5} \mathrm{~J} \approx 3.5 \times 10^{5} \mathrm{~J}$
final kinetic energy $=\frac{1}{2} \times 2400 \times 10.5^{2}=1.32 \times 10^{5} \mathrm{~J} \approx 1.3 \times 10^{5} \mathrm{~J}$
c The collision is inelastic because there is a decrease in the kinetic energy of the system.
Some of the initial kinetic energy is transformed to other forms, such as heat.
8 Initial momentum $=$ final momentum
$(1.2 \times 4.0)+(0.80 \times-2.5)=(1.2 \times 1.0)+(0.80 \times v)$

$$
\begin{align*}
& 2.80=1.20+0.80 v  \tag{1}\\
& v=\frac{2.80-1.20}{0.80}  \tag{1}\\
& v=2.0 \mathrm{~m} \mathrm{~s}^{-1} \text { to the right }
\end{align*}
$$

9 a Initial momentum of bullet $=$ final momentum of bullet and block
$0.030 \times 140=0.490 v \quad($ final total mass $=460+30=490 \mathrm{~g})$

$$
v=\frac{0.030 \times 140}{0.490}
$$

$$
\begin{equation*}
v=8.57 \mathrm{~m} \mathrm{~s}^{-1} \approx 8.6 \mathrm{~m} \mathrm{~s}^{-1} \tag{1}
\end{equation*}
$$

b Kinetic energy $=\frac{1}{2} m v^{2}$

$$
\begin{equation*}
\text { initial kinetic energy }=\frac{1}{2} \times 0.030 \times 140^{2}=294 \approx 290 \mathrm{~J} \tag{1}
\end{equation*}
$$

final kinetic energy $=\frac{1}{2} \times 0.490 \times 8.57^{2} \approx 18 \mathrm{~J}(\sim 6 \%$ of initial KE $)$
c Kinetic energy is not conserved, so the collision is inelastic.
10


Momentum is conserved so $p_{\text {nucleus }-\alpha}=p_{\alpha}=p$
Kinetic energy $\mathrm{KE}=\frac{1}{2} m v^{2}$ and momentum $=m v$, so $\mathrm{KE}=\frac{p^{2}}{2 m}$
$\mathrm{KE}_{\alpha}=\frac{p^{2}}{2 m}$
$\mathrm{KE}_{\text {nucleus }-\alpha}=\frac{p^{2}}{2(M-m)}=\frac{p^{2}}{2(55-1) m}=\frac{1}{54}\left(\frac{p^{2}}{2 m}\right)$
$\mathrm{KE}_{\text {total }}=\frac{p^{2}}{2 m}+\frac{1}{54}\left(\frac{p^{2}}{2 m}\right)=\frac{55}{54}\left(\frac{p^{2}}{2 m}\right)$
ratio $=\frac{\mathrm{KE}_{\alpha}}{\mathrm{KE}_{\text {total }}}=\frac{p^{2}}{2 m} / \frac{55}{54}\left(\frac{p^{2}}{2 m}\right)=\frac{54}{55}=0.982 \approx 0.98$
The kinetic energy of the $\alpha$-particle is about $98 \%$ of the final total kinetic energy.

11 a Momentum is a vector quantity and is conserved.
It has no component at right-angles $\left(p \cos 90^{\circ}=0\right)$, hence momentum in a direction at right angles to the initial momentum must be zero.
Hence, $2.6 \sin 30^{\circ}=1.5 \sin \theta$
$\theta=\sin ^{-1}\left(\frac{2.6 \sin 30}{1.5}\right)=60^{\circ}$
b Initial momentum $=1.2 \times 3.0=3.6 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$ in the direction of A's initial velocity.
Momentum can be added vectorially.

$p_{\mathrm{A}}=$ final momentum of $\mathbf{A}$
$p_{\mathrm{B}}=$ final momentum of $\mathbf{B}$
$p=$ total final momentum

The angle between the final velocities (and hence momentum) of $\mathbf{A}$ and $\mathbf{B}$ is $90^{\circ}$.
The final momentum $p$ is the vector sum of the momentum of $\mathbf{A}$ and the momentum of $\mathbf{B}$.
final momentum $p=\sqrt{(1.2 \times 2.6)^{2}+(1.2 \times 1.5)^{2}}=3.6 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
The initial momentum and the final momentum are the same.
OR
Initial momentum $=1.2 \times 3.0=3.6 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$ in the direction of $\mathbf{A}$ 's initial velocity.
final momentum $=$ sum of momentum components
final momentum parallel to A's initial velocity $=(1.2 \times 2.6) \cos 30^{\circ}+(1.2 \times 1.5) \cos 60^{\circ}$

$$
\begin{equation*}
=3.6 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} \tag{1}
\end{equation*}
$$

The initial momentum and the final momentum are the same. (From part a, the components of momentum at right-angles to A's initial velocity are zero.)

