1 Marking scheme: Worksheet

1	Momentum = mass \times velocity	[1]
	SI unit of momentum is kg m s^{-1} .	[1]

2 Momentum is a vector quantity – it has both direction and magnitude.

If the initial momentum of the car is +p, then its final momentum must be -p (see diagram).

 $\Delta p = -p - p = -2p$ (the change is not zero)

[1]

[1]

[1]

- **3 a** $\Delta p = (2.0 \times 8.0) (2.0 \times 4.0)$ [1] $\Delta p = +8.0 \text{ kg m s}^{-1}$ [1]
 - **b** $\Delta p = (2.0 \times -4.0) (2.0 \times 3.0)$ [1] $\Delta p = -14 \text{ kg m s}^{-1}$ [1]

c
$$\Delta p = (2.0 \times 8.0) - (2.0 \times -5.0)$$
 [1]
 $\Delta p = +26 \text{ kg m s}^{-1}$ [1]

4 Momentum = mass \times velocity

Lorry:
$$p = mv = 10 \times 10^3 \times 20 = 2.0 \times 10^5 \text{ kg m s}^{-1}$$
 [1]

Dust:
$$p = mv = 1.5 \times 10^{-3} \times (20 \times 10^{3}) = 30 \text{ kg m s}^{-1}$$
 [1]

The lorry has greater momentum.

5 a
$$v^2 = u^2 + 2as; u = 0$$
 [1]
 $v^2 = 0 + (2 \times 9.81 \times 1.5) = 29.43 \text{ m}^2 \text{ s}^{-2}$ [1]

Hence,
$$v = \sqrt{29.43} = 5.4249 \text{ m s}^{-1} \approx 5.4 \text{ m s}^{-1}$$
 [1]

b Final speed of ball =
$$\frac{5.42}{2}$$
 = 2.71 m s⁻¹
 Δp = final momentum – initial momentum

 $\Delta p = -(0.200 \times 2.71) - (0.200 \times 5.42)$ $\Delta p \approx 1.6 \text{ kg m s}^{-1} \quad (\text{magnitude only})$ 6 a $p = mv = 20 \times 180$ $p = 3.6 \times 10^3 \text{ kg m s}^{-1}$ [1]
[1]

- **b** The momentum is conserved in this explosion. The momentum of the cannon is equal in magnitude but opposite in direction to that of the shell. [1] Momentum of the cannon = 3.6×10^3 kg m s⁻¹ [1]
- c Using the answer from **b**, we have: $850 \times V = 3.6 \times 10^3$ [1] $V = \frac{3.6 \times 10^3}{850}$ [1] $V \approx 4.2 \text{ m s}^{-1}$ [1]

1

7 a Initial momentum = final momentum [1] $900 \times 28 = (1500 + 900) \times V$ (V = combined velocity) [1] $V = \frac{900 \times 28}{2400}$ [1] $V = 10.5 \text{ m s}^{-1} \approx 11 \text{ m s}^{-1}$ [1] **b** Kinetic energy = $\frac{1}{2}mv^2$ [1] initial kinetic energy = $\frac{1}{2} \times 900 \times 28^2 = 3.53 \times 10^5$ J $\approx 3.5 \times 10^5$ J [1] final kinetic energy = $\frac{1}{2} \times 2400 \times 10.5^2 = 1.32 \times 10^5 \text{ J} \approx 1.3 \times 10^5 \text{ J}$ [1] The collision is inelastic because there is a decrease in the kinetic energy of the system. с Some of the initial kinetic energy is transformed to other forms, such as heat. [1] **8** Initial momentum = final momentum [1] $(1.2 \times 4.0) + (0.80 \times -2.5) = (1.2 \times 1.0) + (0.80 \times v)$ [1]

$$2.80 = 1.20 + 0.80v$$
$$v = \frac{2.80 - 1.20}{0.80}$$
[1]

$$v = 2.0 \text{ m s}^{-1}$$
 to the right [1]

9 a Initial momentum of bullet = final momentum of bullet and block [1] $0.030 \times 140 = 0.490v$ (final total mass = 460 + 30 = 490 g) [1] 0.030×140

$$v = \frac{0.050 \times 140}{0.490}$$
[1]

$$v = 8.57 \text{ m s}^{-1} \approx 8.6 \text{ m s}^{-1}$$
 [1]

b Kinetic energy =
$$\frac{1}{2}mv^2$$
 [1]

initial kinetic energy =
$$\frac{1}{2} \times 0.030 \times 140^2 = 294 \approx 290 \text{ J}$$
 [1]

final kinetic energy =
$$\frac{1}{2} \times 0.490 \times 8.57^2 \approx 18 \text{ J} (\sim 6\% \text{ of initial KE})$$
 [1]

- Kinetic energy is not conserved, so the collision is inelastic. [1] с
- 10

Momentum is conserved so $p_{\text{nucleus}-\alpha} = p_{\alpha} = p$

Kinetic energy KE =
$$\frac{1}{2}mv^2$$
 and momentum = mv , so KE = $\frac{p^2}{2m}$ [1]

$$KE_{\alpha} = \frac{p^2}{2m}$$

$$KE_{nucleus-\alpha} = \frac{p^2}{2(M-m)} = \frac{p^2}{2(55-1)m} = \frac{1}{54} \left(\frac{p^2}{2m}\right)$$
[1]

$$KE_{total} = \frac{p^2}{2m} + \frac{1}{54} \left(\frac{p^2}{2m} \right) = \frac{55}{54} \left(\frac{p^2}{2m} \right)$$
[1]

ratio =
$$\frac{\text{KE}_{a}}{\text{KE}_{\text{total}}} = \frac{p^2}{2m} / \frac{55}{54} \left(\frac{p^2}{2m}\right) = \frac{54}{55} = 0.982 \approx 0.98$$
 [1]

The kinetic energy of the α -particle is about 98% of the final total kinetic energy. [1]

COAS Physics 2 Teacher Resources

[1]

11	a	Momentum is a vector quantity and is conserved. It has no component at right angles $(n \cos 90^\circ = 0)$ hence momentum in a direction at right	
		It has no component at right-angles ($p \cos 90^\circ - 0$), hence momentum in a direction at right angles to the initial momentum must be zero.	[1]
		Hence $2.6 \sin 30^\circ = 1.5 \sin \theta$	[1]
		$(2 6 \sin 30)$	[+]
		$\theta = \sin^{-1}\left(\frac{2.0\sin^{-1}\theta}{1.5}\right) = 60^{\circ}$	[1]
	b	Initial momentum = $1.2 \times 3.0 = 3.6$ kg m s ⁻¹ in the direction of A 's initial velocity.	[1]
		Momentum can be added vectorially.	
		$p_{\rm B}$ $p_{\rm B}$ = final momentum of A $p_{\rm B}$ = final momentum of B p = total final momentum	

30°

The angle between the final velocities (and hence momentum) of A and B is 90°.	[1]
The final momentum p is the vector sum of the momentum of A and the momentum of B .	
final momentum $p = \sqrt{(1.2 \times 2.6)^2 + (1.2 \times 1.5)^2} = 3.6 \text{ kg m s}^{-1}$	[1]
The initial momentum and the final momentum are the same.	
OR	
Initial momentum = $1.2 \times 3.0 = 3.6$ kg m s ⁻¹ in the direction of A 's initial velocity.	[1]

_____p

60°

final momentum = sum of momentum components [1] final momentum parallel to **A**'s initial velocity = $(1.2 \times 2.6) \cos 30^\circ + (1.2 \times 1.5) \cos 60^\circ$ = 3.6 kg m s⁻¹ [1]

The initial momentum and the final momentum are the same. (From part a, the components of momentum at right-angles to A's initial velocity are zero.)