Worksheet 3

acceleration of free fall $g = 9.81 \text{ m s}^{-2}$

Intermediate level

1	Convert the following angles into radians.	
	a 30°	[1]
	b 210°	[1]
	c 0.05°	[1]
		LJ
2	Convert the following angles from radians into degrees.	
	a 1.0 rad	[1]
	b 4.0 rad	[1]
	c 0.15 rad	[1]
3	The planet Mercury takes 88 days to orbit once round the Sun.	
	Calculate its angular displacement in radians during a time interval of:	
	a 44 days	[1]
	h 1 day	[1]
	b I day.	[*]
4	In each case below, state what provides the centripetal force on the object.	
	a A car travels at a high speed round a sharp corner.	[1]
	b A planet orbits the Sun.	[1]
	c An electron orbits the positive nucleus of an atom.	[1]
	d Clothes spin round in the drum of a washing machine.	[1]
_		L J
5	An aeroplane is circling in the sky at a speed of 150 m s ⁻¹ .	
	The aeroplane describes a circle of radius 20 km.	
	For a passenger of mass 80 kg inside this aeroplane, calculate:	
	a her centripetal acceleration	[3]
	b the centripetal force acting on her.	[2]
6	The diagram shows a stone tied to the end of a length of string.	
-	It is whirled round in a <i>horizontal</i> circle of radius 80 cm	
	string	
	• 80 cm	
	over the second s	

The stone has a mass of 90 g and it completes 10 revolutions in a time of 8.2 s.

a Calculate:

b

This distance is i the time taken for one revolution [1] equal to the the distance travelled by the stone during one revolution < ii circumference of the [1] circle. iii the speed of the stone as it travels in the circle [2] the centripetal acceleration of the stone iv [3] the centripetal force on the stone. [2] v What provides the centripetal force on the stone? [1] [1]

stone

c What is the angle between the acceleration of the stone and its velocity?

1

[2]

[3]

Higher level

7 A lump of clay of mass 300 g is placed close to the edge of a spinning turntable. The centre of mass of the lump of clay travels in a circle of radius 12 cm.

- The lump of clay takes 1.6 s to complete one revolution. a
 - Calculate the rotational speed of the clay. i
 - ii Calculate the frictional force between the clay and the turntable.
- **b** The maximum magnitude of the frictional force F between the clay and the turntable is 70% of the weight of the clay. The speed of rotation of clay is slowly increased. Determine the speed of the clay when it *just* starts to slip off the turntable. [4]
- 8 The diagram shows a skateboarder of mass 70 kg who drops through a vertical height of 5.2 m.

The dip has a radius of curvature of 16 m.

- a Assuming no energy losses due to air resistance or friction, calculate the speed of the skateboarder at the bottom of the dip at point **B**.
- You may assume that the speed of the skateboarder at point A is zero. [2]
- b i Calculate the centripetal acceleration of the skateboarder at point **B**. [3]
 - ii Calculate the contact force *R* acting on the skateboarder at point **B**. [3]

Extension

- 9 A car of mass 820 kg travels at a constant speed of 32 m s^{-1} along a banked track. The track is banked at an angle of 20° to centre to the horizontal. of circle
 - weight a The net vertical force on the car is zero. Use this to show that the contact force *R* on the car is 8.56 kN. [2] [4]
 - **b** Use the answer from **a** to calculate the radius of the circle described by the car.

20°

[6]

10 A stone of mass 120 g is fixed to one end of a light rigid rod.

The stone is whirled	l at a constant speed of 4.0 m s ^{-1} in a <i>vertical</i> circle of radius 80 cm.	
Colculate the ratio:	tension in the rod at A	
Calculate the fatio.	tension in the rod at B	

Total: ______ Score: %