3 Worksheet

acceleration of free fall $g=9.81 \mathrm{~m} \mathrm{~s}^{-2}$

Intermediate level

1 Convert the following angles into radians.

$$
\begin{array}{ll}
\text { a } & 30^{\circ} \\
\text { b } & 210^{\circ}
\end{array}
$$

c 0.05°
2 Convert the following angles from radians into degrees.
a 1.0 rad
b 4.0 rad
c 0.15 rad
3 The planet Mercury takes 88 days to orbit once round the Sun.
Calculate its angular displacement in radians during a time interval of:
a 44 days
b 1 day.
4 In each case below, state what provides the centripetal force on the object.
a A car travels at a high speed round a sharp corner.
b A planet orbits the Sun.
c An electron orbits the positive nucleus of an atom.
d Clothes spin round in the drum of a washing machine.
5 An aeroplane is circling in the sky at a speed of $150 \mathrm{~m} \mathrm{~s}^{-1}$.
The aeroplane describes a circle of radius 20 km .
For a passenger of mass 80 kg inside this aeroplane, calculate:
a her centripetal acceleration
b the centripetal force acting on her.
6 The diagram shows a stone tied to the end of a length of string.
It is whirled round in a horizontal circle of radius 80 cm .

The stone has a mass of 90 g and it completes 10 revolutions in a time of 8.2 s .
a Calculate:
i the time taken for one revolution
ii the distance travelled by the stone during one revolution
iii the speed of the stone as it travels in the circle

iv the centripetal acceleration of the stone
\mathbf{v} the centripetal force on the stone.
b What provides the centripetal force on the stone?
c What is the angle between the acceleration of the stone and its velocity?

Higher level

7 A lump of clay of mass 300 g is placed close to the edge of a spinning turntable. The centre of mass of the lump of clay travels in a circle of radius 12 cm .
a The lump of clay takes 1.6 s to complete one revoiution.
i Calculate the rotational speed of the clay.

ii Calculate the frictional force between the clay and the turntable.
The maximum magnitude of the frictional force F between the clay and the turntable is 70% of the weight of the clay. The speed of rotation of clay is slowly increased.
Determine the speed of the clay when it just starts to slip off the turntable.
8 The diagram shows a skateboarder of mass 70 kg who drops through a vertical height of 5.2 m .

The dip has a radius of curvature of 16 m .
a Assuming no energy losses due to air resistance or friction, calculate the speed of the skateboarder at the bottom of the dip at point \mathbf{B}.
You may assume that the speed of the skateboarder at point \mathbf{A} is zero.
b i Calculate the centripetal acceleration of the skateboarder at point \mathbf{B}.
ii Calculate the contact force R acting on the skateboarder at point \mathbf{B}.

Extension

9 A car of mass 820 kg travels at a constant speed of $32 \mathrm{~m} \mathrm{~s}^{-1}$ along a banked track.
The track is banked at an angle of 20° to the horizontal.

a The net vertical force on the car is zero.
Use this to show that the contact force R on the car is 8.56 kN .
b Use the answer from a to calculate the radius of the circle described by the car.

10 A stone of mass 120 g is fixed to one end of a light rigid rod.

The stone is whirled at a constant speed of $4.0 \mathrm{~m} \mathrm{~s}^{-1}$ in a vertical circle of radius 80 cm .
Calculate the ratio: $\frac{\text { tension in the } \operatorname{rod} \text { at } \mathbf{A}}{\text { tension in the } \operatorname{rod} \text { at } \mathbf{B}}$

Total:

