
2.5.7 Double Pendulum

Consider a simple pendulum of length L with a bob of mass m1, to which
is attached a second simple pendulum of length L with a bob of mass m2.
The first pendulum can oscillate about the suspension point with angular
coordinate θ1, and the second pendulum can oscillate about the mass m1

with angular coordinate θ2.

The potential energy of this system is given by:

V = −m1gL cos θ1 −m2gL(cos θ1 + cos θ2)

Expanding this in a small angle approximation cos θ = 1− θ2/2:

V = V0 +
gL
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(m1 + m2)θ
2
1 + m2θ

2
2

]

where V0 is independent of the θ coordinates and will be ignored from now
on. The remaining term represents the variation of V during oscillations.

The kinetic energy of the system is a bit more tricky. For the mass m1

it is just:

T1 =
1

2
Iω2 =
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m1L
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dθ1

dt

)2

60



For the mass m2 it is simplest to work in cartesian coordinates x and y:

dx

dt
= L

[

cos θ1

(

dθ1

dt

)

+ cos θ2

(

dθ2

dt

)]

dy

dt
= −L

[

sin θ1

(

dθ1

dt

)

+ sin θ2

(

dθ2

dt

)]

T2 =
1

2
m2L
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dt
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+

(

dθ2

dt
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+ 2(cos θ1 cos θ2 + sin θ1 sin θ2)
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dt

)(
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For small angles the coefficient in the angular coordinates can be approxi-
mated:

cos θ1 cos θ2 + sin θ1 sin θ2 = cos(θ1 − θ2) ≈ 1

and the total kinetic energy is:

T = T1 + T2 =
1

2
L2



(m1 + m2)

(

dθ1

dt

)2

+ 2m2

(

dθ1

dt
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dθ2
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)

+ m2

(

dθ2
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)2




The kinetic and potential energies can be written in matrix form:

T =
1

2
L2

(

dθi

dt

)T

M

(

dθi

dt

)

M =

(

m1 + m2 m2

m2 m2

)

V =
1

2
gLθT

i Kθi K =

(

m1 + m2 0
0 m2

)

Total energy conservation dE/dt = 0 leads to the equation:

M
d2θi

dt2
+ Kθi = 0

as already shown in an earlier section. We make a change of variables:

αi =

(

1/µ 0
0 1

)

θi

where µ =
√

m2/(m1 + m2). With these coordinates, and taking out a factor
m2, the energy matrices become:

M ′ =

(

1 µ
µ 1

)

K ′ =

(

1 0
0 1

)
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The eigenvalues of the motion can be found from the determinant:

|M ′ − λK ′| =
∣

∣

∣

∣

∣

1− λ µ
µ 1− λ

∣

∣

∣

∣

∣

= 0

The solutions are λ1 = 1 + µ and λ2 = 1 − µ, and the corresponding eigen-
vectors are:

α1 =
1√
2

(

1
1

)

α2 =
1√
2

(

1
−1

)

The two pendulums are in phase in the first solution and out of phase in
the second solution. Putting back in the constants g, L, m1 and m2 in the
appropriate places the frequencies of the normal modes are:

ω1 =

√

g

L(1 + µ)
ω2 =

√

g

L(1− µ)

and the normal coordinates are:

θi =
1

L





√

1/(m1 + m2) 0

0
√

1/m2



αi

When m2 ≪ m1, µ → 0 the solutions become degenerate and represent the
simple pendulum with m1 and length L. When m2 ≫ m1, µ → 1 the higher
mode ω2 → ∞, and the lower mode represents a simple pendulum with m2

and length 2L.
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