Please write clearly in block capita	ls.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	

AS CHEMISTRY

Paper 1: Inorganic and Physical Chemistry

Specimen materials (set 2)

1 hour 30 minutes

Materials

For this paper you must have:

- the AS Chemistry Data Sheet/Periodic Table
- a ruler with millimetre measurements
- a calculator, which you are expected to use where appropriate.

Instructions

- Use black ink or black ball-point pen.
- Answer **all** questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The maximum mark for this paper is 80.
- The AS Chemistry Data Sheet/Periodic Table is provided.

Advice

• You are advised to spend about 65 minutes on Section A and 25 minutes on Section B.

	Section A	
	Answer all questions in this section.	
0 1	This question is about a toxic chloroalkane, ${f X}$, that has a boiling	point of 40 °C.
	A student carried out an experiment to determine the M_r of X by if from a hypodermic syringe into a gas syringe in an oven at 97 °C The student's results are set out in Table 1 and Table 2 .	
	Table 1	
	Mass of hypodermic syringe filled with ${f X}$ before injection / g	10.340
	Mass of hypodermic syringe with left over ${f X}$ after injection / g	10.070
	Mass of X injected / g	
	Table 2	
	Volume reading on gas syringe before injection of \boldsymbol{X} / cm^3	0.0
	Volume of X in gas syringe after injection of X / cm^3	105.0
	Volume of X / cm ³	
D 1 . 1	Complete Table 1 and Table 2 by calculating the mass and volu	ıme of X. [1 ma

01.2	X is known to be one of the following chloroalkanes: CCI_4 $CHCI_3$ CH_2CI_2 or CH_3CI_3
	Justify this statement by calculating a value for the M_r of X and use your answer to suggest the most likely identity of X from this list.
	Give your answer for the M_r of X to an appropriate precision. (The gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$)
	(The gas constant R = 0.513 K mol) [5 marks]
	<i>M</i> _r of X
	$M_{\rm r}$ of X =
	Identity of X (If you have been unable to calculate a value for M_r , you may assume that the M_r value is 52. This is not the correct value).
	Identity of X =
01.3	Suggest a reason, other than apparatus inaccuracy, why the M_r value determined from the experimental results differs from the actual M_r . Explain your answer.
	[2 marks]
	Question 1 continues on the next page

01.4	Suggest, with a reason, an appropriate safety precaution that the student should take when using the toxic chloroalkane, X , in the experiment. [2 marks]
	Safety precaution
	Reason

02.02.1	This question is about enthalpy changes. Write an equation, including state symbols, to show the reaction taking platthe standard enthalpy of combustion for ethanol is measured.	ace when [2 marks]
02.2	State the name given to the enthalpy change represented by the following chemical equation. Explain why this enthalpy change would be difficult to determine directly. $C(s) + \frac{1}{2}O_2(g) \longrightarrow CO(g)$	[2 marks]
	Enthalpy change	
02.3	Standard enthalpies of combustion for carbon and carbon monoxide are –393 kJ mol ⁻¹ and –283 kJ mol ⁻¹ , respectively. Use these data to calculate the enthalpy change for the reaction in 02.2 .	[2 marks]
	Enthalpy change =	_ kJ mol ⁻¹

02.4	Use the following data to calculate a value for the Xe–F bond enthalpy in XeF_4	
	$\begin{array}{rcl} Xe(g) &+& 2F_2(g) &\longrightarrow & XeF_4(g) & \Delta H = -252 \text{ kJ mol}^{-1} \\ & F_2(g) &\longrightarrow & 2F(g) & \Delta H = +158 \text{ kJ mol}^{-1} \end{array}$ [3 mark]	ːs]
	Xe–F bond enthalpy = kJ mo	I ⁻¹
02.5	Suggest a reason why the value calculated in 02.4 differs from the mean Xe–F bond enthalpy quoted in a data source. [1 mar	d
	Turn over for the next question	

03	Magnesium exists as three isotopes: ²⁴ Mg, ²⁵ Mg and ²⁶ Mg
03.1	In terms of sub-atomic particles, state the difference between the three isotopes of magnesium.
	[1 mark]
03.2	State how, if at all, the chemical properties of these isotopes differ. Give a reason for your answer. [2 marks]
	Chemical properties
	Reason
03.3	²⁵ Mg atoms make up 10.0% by mass in a sample of magnesium. Magnesium has $A_r = 24.3$
	Use this information to deduce the percentages of the other two magnesium isotopes present in the sample.
	[4 marks]
	²⁴ Mg percentage = % ²⁶ Mg percentage = %

0 3 . 4 In a TOF mass	s spectrometer, ions are accelerated to the same kinetic energy (KE).
$KE = \frac{1}{2}mv^2$	where $m =$ mass (kg) and $v =$ velocity (m s ⁻¹)
$V = \frac{d}{t}$	where d = distance (m) and t = time (s)
$4.52 \times 10^{-16} \text{ J}$ Calculate the	s spectrometer, each ²⁵ Mg ⁺ ion is accelerated to a kinetic energy of and the time of flight is 1.44×10^{-5} s. distance travelled, in metres, in the TOF drift region. o constant L = 6.022×10^{23} mol ⁻¹)
	[4 marks]

Distance = _____ m

0 4 A sample of strontium ore is known to contain strontium oxide, strontium carbonate and some inert impurities. To determine the mass of strontium carbonate present, a student weighed a sample of the solid ore and then heated it in a crucible for 5 minutes. The sample was allowed to cool and then reweighed. This heating, cooling and reweighing was carried out three times. The results are set out in Table 3 .			
	Table 3		
	Mass of crucible / g	9.85	
	Mass of crucible and ore sample / g	16.11	
	Mass of crucible and sample after first heating / g	14.66	
	Mass of crucible and sample after second heating / g	14.58	
	Mass of crucible and sample after third heating / g	14.58	
0 4 . 1 When strontium carbonate is heated it decomposes according to the following equation. SrCO ₃ \longrightarrow SrO + CO ₂			
	Give a reason why the mass of the solid sample changed	during the ex	periment. [1 mark]

0 4 • 2 Use the data in Table 3 to calculate the mass of strontium carbonate in the cample. Give your answer to an appropriate precision	original ore
sample. Give your answer to an appropriate precision.	[5 marks]
Mass of strontium carbonate =	g
	9
0 4 . 3 Each balance reading has an uncertainty of ±5.00 mg.	
Calculate the percentage error in the initial mass of ore used.	[1 mark]
	[many
Percentage error =	%
Question 4 continues on the next page	

Г

culating
nate ? marks]
etal. ocess. 5 marks]

05	 A student was given a 50.0 g sample of solid silver chloride contaminated with solid silver carbonate. The student suggested the following method to obtain the maximum amount of pure dry silver chloride from the sample: 1. Tip the solid into a boiling tube. 2. Add dilute nitric acid. 3. Allow the remaining solid to settle. 4. Decant off the liquid. 5. Leave the sample to dry on a shelf.
05.1	Identify any faults or omissions in the method suggested by the student. Suggest improvements to the method, using commonly available laboratory equipment. The following chemicals are also available: distilled water, dilute solutions of NaOH, NH ₃ , HCI, H ₂ SO ₄ [6 marks]

06	This question is about elements in Group 7 of the Periodic Table and their compounds.
06.1	Bromine (Br ₂), strontium chloride (SrCl ₂) and iodine monochloride (ICI) all have similar M_r values.
	Suggest, with reasons, the order of melting points for these three substances. [6 marks]

06.2	Write an equation for the reaction of chlorine with cold water. State a reason why chlorine is added to drinking water, and suggest a disadvantage of treating water in this way. [3 marks]					
	Equation					
	Reason					
	Disadvantage					
0 6 . 3	Bromine reacts with phosphorus to form phosphorus tribromide.					
	Write an equation for this reaction and draw the shape of the phosphorus tribromide molecule formed. Suggest the bond angle in phosphorus tribromide.					
	[3 marks]					
	Equation					
	Shape					
	Bond angle					
	Question 6 continues on the next page					

06.4	Phosphorus pentabromide in the solid state consists of PBr_4^+ and Br^- ions. Draw the shape of the PBr_4^+ ion and suggest its bond angle. Shape	[2 marks]
	Bond angle	

Section B					
Answer all questions in this section.					
For each answer CORRECT METHOD	er per question is allowed. er completely fill in the oval alongside the appropriate answer. • WRONG METHODS © © © © Ф hange your answer you must cross out your original answer as shown. • turn to an answer previously crossed out, ring the answer you now wish to s	select			
	hich is the correct classification for the element yttrium (Y)?	1 mark]			
B C D	p blockImage: Colorador de la colorad				
	nich of the following is a correct statement about the trend in atomic radius ac riod 3 of the Periodic Table?	cross 1 mark]			
Α	radius increases because the atoms have more electrons	0			
В	radius decreases because nuclear charge increases	0			
C	radius increases because shielding (screening) increases	0			
D	radius decreases because shielding (screening) decreases	0			

09	What i	asuring cylinder has an uncertainty of $\pm 5 \text{ cm}^3$. Is the minimum volume of liquid that can be measured if the percentage lume is to be less than 0.20%? 0.025 dm ³ 0.25 dm ³ 2.5 dm ³ 25 dm ³	error in [1 mark]
10		Int Q forms a sulfate with formula QSO ₄ of these could represent the electronic configuration of an atom of Q? [Ne]3s ¹ [Ne]3s ² [Ne]3s ² 3p ¹ [Ne]3s ¹ 3p ²]	[1 mark]
1 1	Which A B C D	equation represents a reaction that does take place? $CI_2 + 2NaI \longrightarrow 2NaCI + I_2$ $Br_2 + 2NaCI \longrightarrow 2NaBr + CI_2$ $NaCI + H_2O \longrightarrow HCI + NaOH$ $2HCI + H_2SO_4 \longrightarrow CI_2 + SO_2 + 2H_2O$ O	[1 mark]

The following equilibrium was established in a container with volume V cm³ at 1 2 393 K and 200 kPa. $M_2(g) + R(g) \rightleftharpoons RM_2(g) \Delta H = +150 \text{ kJ mol}^{-1}$ Which change would increase the yield of RM₂? [1 mark] Α change the pressure to 150 kPa \bigcirc В change the temperature to 293 K \bigcirc \bigcirc С remove RM₂ as it is formed change the volume of the vessel to 2V cm³ \bigcirc D 1 3 Which of these shows nitrogen in its correct oxidation states in the compounds given? [1 mark] \mathbf{NH}_{3} **N**₂**O** HNO₂ +3 -1 +5 \bigcirc Α -3 +1 +3 \bigcirc В -3 -5 +1 \bigcirc С +3 -1 -3 \bigcirc D

14	What is the volume of 0.200 mol dm ⁻³ Ba(OH) ₂ (aq) required to neutralise exac 30.0 cm^3 of 0.100 mol dm ⁻³ HCI(aq)?				
	Α	150.0 cm ³ \bigcirc			
	В	75.0 cm ³			
	С	15.0 cm ³			
	D	7.50 cm^3			
1 5	Which	reaction has the largest atom economy for the production of hydrogen?	[1 mark]		
	Α	$C + H_2 O \longrightarrow CO + H_2 $			
	В	$Zn + 2HCI \longrightarrow ZnCl_2 + H_2 \bigcirc$			
	С	$CH_4 + H_2O \longrightarrow CO + 3H_2 $			
	D	$CO + H_2O \longrightarrow CO_2 + H_2$			
1 6	Which	species is the best oxidising agent?	[1 mark]		
	Α	Cl ₂			
	В	CI ⁻ O			
	С	Br ₂			
	D	Br			

Which of these correctly shows the numbers of sub-atomic particles in a ⁴¹K⁺ ion? [1 mark]

	Number of electrons	Number of protons	Number of neutrons	
A	19	19	20	C
В	18	20	21	
с	18	19	22	C
D	19	18	23	

1 8

1 7

After reaction of some zinc metal with excess sulfuric acid, a student collected 40.8 g of $ZnSO_4$.7H₂O crystals. The yield of crystals was 70.0%.

What was the original mass of zinc used?

[1 mark]

Turn over for the next question

19	Which of these is a redox reaction?				
	Α	CaO + SiO ₂	\longrightarrow CaSiO $_{3}$	0	
	В	$H_2SO_4 + Na_2O_4$	$\rightarrow Na_2SO_4 + H_2O$	0	
	С	NaBr + H ₂ SO	$_{4} \longrightarrow NaHSO_{4} + HBr$	0	
	D	Mg + S \longrightarrow	MgS	0	
	0.40				
2 0	2.40 g and 1.	of an explosive, 41% hydrogen b	J, contains 0.473 g of nitro y mass. The remainder of .	ogen. J also contains 33.8% J is oxygen.	carbon
	What	is the empirical fo	ormula of J?		[1 mark]
	Α	C ₄ HNO ₂	0		
	В	CH_2N_2O	0		
	С	C ₂ HNO ₂	0		
	D	CHNO	0		

END OF QUESTIONS

