AQAE

Please write clearly in block capitals.
Centre number \square Candidate number \square
Surname \square Forename(s) \square Candidate signature \qquad

AS

CHEMISTRY

Paper 1: Inorganic and Physical Chemistry

Specimen materials (set 2)

1 hour 30 minutes

Materials

For this paper you must have:

- the AS Chemistry Data Sheet/Periodic Table
- a ruler with millimetre measurements
- a calculator, which you are expected to use where appropriate.

Instructions

- Use black ink or black ball-point pen.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The maximum mark for this paper is 80 .
- The AS Chemistry Data Sheet/Periodic Table is provided.

Advice

- You are advised to spend about 65 minutes on Section A and 25 minutes on Section B.

Section A		
$0{ }^{0} 1$	This question is about a toxic chloroalkane, \mathbf{X}, that has a boiling point of $40^{\circ} \mathrm{C}$.	
	A student carried out an experiment to determine the M_{r} of \mathbf{X} by from a hypodermic syringe into a gas syringe in an oven at 97 The student's results are set out in Table 1 and Table 2. Table 1	cting nd 100
	Mass of hypodermic syringe filled with \mathbf{X} before injection / g	10.340
	Mass of hypodermic syringe with left over \mathbf{X} after injection / g	10.070
	Mass of \mathbf{X} injected/g	

Table 2

Volume reading on gas syringe before injection of $\mathbf{X} / \mathrm{cm}^{3}$	0.0
Volume of \mathbf{X} in gas syringe after injection of $\mathbf{X} / \mathrm{cm}^{3}$	105.0
Volume of $\mathbf{X} / \mathrm{cm}^{3}$	

$\mathbf{0} 1$. $\mathbf{1}$ Complete Table 1 and Table 2 by calculating the mass and volume of \mathbf{X}.

| $\mathbf{0}$ | $\mathbf{1} .2 \mathrm{X}$ is known to be one of the following chloroalkanes: $\mathrm{CCl}_{4} \mathrm{CHCl}_{3} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ or $\mathrm{CH}_{3} \mathrm{Cl}, ~$ |
| :--- | :--- | :--- |

Justify this statement by calculating a value for the M_{r} of \mathbf{X} and use your answer to suggest the most likely identity of \mathbf{X} from this list.

Give your answer for the M_{r} of X to an appropriate precision.
(The gas constant $R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$)
M_{r} of \mathbf{X}

$$
M_{r} \text { of } X=
$$

\qquad
Identity of X
(If you have been unable to calculate a value for M_{r}, you may assume that the M_{r} value is 52 . This is not the correct value).

Identity of $\mathbf{X}=$ \qquad
 the experimental results differs from the actual M_{r}. Explain your answer.
\qquad
\qquad
\qquad
\qquad
\qquad

Question 1 continues on the next page

$\mathbf{0}$	$\mathbf{1}$.	$\mathbf{4}$
Suggest, with a reason, an appropriate safety precaution that the student should take			

Safety precaution

Reason

Turn over for the next question

DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

$\mathbf{0}$	$\mathbf{2}$	This question is about enthalpy changes.

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{1}$ Write an equation, including state symbols, to show the reaction taking place when |
| :--- | :--- | :--- | :--- | the standard enthalpy of combustion for ethanol is measured.

[2 marks]

| $\mathbf{0}$ | $\mathbf{2}$. | $\mathbf{2}$ State the name given to the enthalpy change represented by the following |
| :--- | :--- | :--- | chemical equation.

Explain why this enthalpy change would be difficult to determine directly.
[2 marks]

$$
\mathrm{C}(\mathrm{~s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}(\mathrm{~g})
$$

Enthalpy change \qquad
Explanation \qquad
\qquad
\qquad

0 2 . 3 Standard enthalpies of combustion for carbon and carbon monoxide are $-393 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $-283 \mathrm{~kJ} \mathrm{~mol}^{-1}$, respectively.

Use these data to calculate the enthalpy change for the reaction in 02.2.

$\mathbf{0}$	$\mathbf{2}$	$\mathbf{4}$	Use the following data to calculate a value for the $\mathrm{Xe}-\mathrm{F}$ bond enthalpy in XeF_{4}

$$
\begin{aligned}
\mathrm{Xe}(\mathrm{~g})+2 \mathrm{~F}_{2}(\mathrm{~g}) & \longrightarrow \mathrm{XeF}_{4}(\mathrm{~g})
\end{aligned} \quad \begin{aligned}
& \Delta H=-252 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\mathrm{~F}_{2}(\mathrm{~g}) & 2 \mathrm{~F}(\mathrm{~g})
\end{aligned} \quad \Delta H=+158 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

\qquad $\mathrm{kJ} \mathrm{mol}^{-1}$
 enthalpy quoted in a data source.
[1 mark]
\qquad
\qquad
\qquad

Turn over for the next question

| 0 | 3 |
| :--- | :--- |\quad Magnesium exists as three isotopes: ${ }^{24} \mathrm{Mg},{ }^{25} \mathrm{Mg}$ and ${ }^{26} \mathrm{Mg}$

| $\mathbf{0}$ | $\mathbf{3} \cdot \mathbf{1}$ In terms of sub-atomic particles, state the difference between the three isotopes |
| :--- | :--- | :--- | of magnesium.

[1 mark]
\qquad
\qquad
\qquad

Give a reason for your answer.
[2 marks]
Chemical properties \qquad
\qquad
Reason
\qquad
\qquad
$\mathbf{0} \mathbf{3}$. $\mathbf{3}^{25} \mathrm{Mg}$ atoms make up 10.0% by mass in a sample of magnesium. Magnesium has $A_{r}=24.3$

Use this information to deduce the percentages of the other two magnesium isotopes present in the sample.

[^0]
$\mathrm{KE}=\frac{1}{2} m v^{2} \quad$ where $m=$ mass (kg) and $v=$ velocity $\left(\mathrm{m} \mathrm{s}^{-1}\right)$
$v=\frac{d}{t} \quad$ where $d=$ distance (m) and $t=$ time (s)
In a TOF mass spectrometer, each ${ }^{25} \mathrm{Mg}^{+}$ion is accelerated to a kinetic energy of $4.52 \times 10^{-16} \mathrm{~J}$ and the time of flight is $1.44 \times 10^{-5} \mathrm{~s}$.
Calculate the distance travelled, in metres, in the TOF drift region.
(The Avogadro constant $\mathrm{L}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$)
\qquad

| 0 | $\mathbf{4}$ | A sample of strontium ore is known to contain strontium oxide, strontium carbonate |
| :--- | :--- | :--- | and some inert impurities. To determine the mass of strontium carbonate present, a student weighed a sample of the solid ore and then heated it in a crucible for 5 minutes. The sample was allowed to cool and then reweighed. This heating, cooling and reweighing was carried out three times.

The results are set out in Table 3.

Table 3

Mass of crucible / g	9.85
Mass of crucible and ore sample / g	16.11
Mass of crucible and sample after first heating / g	14.66
Mass of crucible and sample after second heating / g	14.58
Mass of crucible and sample after third heating / g	14.58

| $\mathbf{0}$ | $\mathbf{4}$. | $\mathbf{1}$ When strontium carbonate is heated it decomposes according to the following |
| :--- | :--- | :--- | equation.

$$
\mathrm{SrCO}_{3} \longrightarrow \mathrm{SrO}+\mathrm{CO}_{2}
$$

Give a reason why the mass of the solid sample changed during the experiment.
[1 mark]
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{4}$ | $\mathbf{2}$ Use the data in Table 3 to calculate the mass of strontium carbonate in the original ore |
| :--- | :--- | :--- | sample. Give your answer to an appropriate precision.

Calculate the percentage error in the initial mass of ore used.

| 0 | 4 | 4 |
| :--- | :--- | :--- | The mass of inert impurities in the sample was 347 mg .

Deduce the mass of SrO in the sample and justify any assumption made in calculating your answer.
(If you have been unable to answer 04.2, assume the mass of strontium carbonate was 4.85 g . This is not the correct answer.)

Mass of $\mathrm{SrO}=$ \qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{4}$.	$\mathbf{5}$
Strontium metal can be extracted by heating strontium oxide with aluminium metal.			

Write an equation for the reaction and state the role of the aluminium in the process. Explain why strontium forms a vapour but aluminium oxide is formed as a solid.
[5 marks]
Equation
\qquad
Role of aluminium \qquad
\qquad
Explanation \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{5}$ A student was given a 50.0 g sample of solid silver chloride contaminated with solid |
| :--- | :--- | :--- | silver carbonate.

The student suggested the following method to obtain the maximum amount of pure dry silver chloride from the sample:

1. Tip the solid into a boiling tube.
2. Add dilute nitric acid.
3. Allow the remaining solid to settle.
4. Decant off the liquid.
5. Leave the sample to dry on a shelf.

Suggest improvements to the method, using commonly available laboratory equipment.

The following chemicals are also available:
distilled water, dilute solutions of $\mathrm{NaOH}, \mathrm{NH}_{3}, \mathrm{HCl}, \mathrm{H}_{2} \mathrm{SO}_{4}$
\qquad

| 0 | 6 | This question is about elements in Group 7 of the Periodic Table and their |
| :--- | :--- | :--- | compounds.

| $\mathbf{0}$ | $\mathbf{6}$ | $\mathbf{1}$ | Bromine $\left(\mathrm{Br}_{2}\right)$, strontium chloride $\left(\mathrm{SrCl}_{2}\right)$ and iodine monochloride (ICl) all have |
| :--- | :--- | :--- | :--- | similar M_{r} values.

Suggest, with reasons, the order of melting points for these three substances.
\qquad
(
\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | 6 | 2 |
| :--- | :--- | :--- | Write an equation for the reaction of chlorine with cold water.

State a reason why chlorine is added to drinking water, and suggest a disadvantage of treating water in this way.

Equation
\qquad
Reason \qquad
\qquad

Disadvantage \qquad
\qquad
\qquad

0	6	3

Write an equation for this reaction and draw the shape of the phosphorus tribromide molecule formed.
Suggest the bond angle in phosphorus tribromide.

Equation

Shape

Bond angle \qquad

Question 6 continues on the next page

| $\mathbf{0}$ | 6 | .4 |
| :--- | :--- | :--- | Phosphorus pentabromide in the solid state consists of $\mathrm{PBr}_{4}{ }^{+}$and Br^{-}ions. Draw the shape of the $\mathrm{PBr}_{4}{ }^{+}$ion and suggest its bond angle.

Shape

Bond angle

Section B

Answer all questions in this section.

Only one answer per question is allowed.
For each answer completely fill in the oval alongside the appropriate answer.

CORRECT METHOD

WRONG METHODS

If you want to change your answer you must cross out your original answer as shown.

If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown.

| $\mathbf{0}$ | $\mathbf{7}$ Which is the correct classification for the element yttrium (Y) ? |
| :--- | :--- | :--- |

A sblock \square
B p block

C d block

D f block

| $\mathbf{0}$ | $\mathbf{8}$ Which of the following is a correct statement about the trend in atomic radius across |
| :--- | :--- | :--- | Period 3 of the Periodic Table?

A radius increases because the atoms have more electrons

B radius decreases because nuclear charge increases
C radius increases because shielding (screening) increases
D radius decreases because shielding (screening) decreases

| 0 | 9 |
| :--- | :--- |\quad A measuring cylinder has an uncertainty of $\pm 5 \mathrm{~cm}^{3}$.

What is the minimum volume of liquid that can be measured if the percentage error in the volume is to be less than 0.20% ?

A $\quad 0.025 \mathrm{dm}^{3}$

B $\quad 0.25 \mathrm{dm}^{3}$

C $\quad 2.5 \mathrm{dm}^{3}$

D $\quad 25 \mathrm{dm}^{3}$ \square

$\mathbf{1}$	$\mathbf{0}$ Element Q forms a sulfate with formula QSO_{4}

Which of these could represent the electronic configuration of an atom of Q ?

A $\quad[\mathrm{Ne}] 3 \mathrm{~s}^{1}$

B $\quad[\mathrm{Ne}] 3 \mathrm{~s}^{2}$

C $\quad[\mathrm{Ne}] 3 s^{2} 3 p^{1}$ \square
D $\quad[\mathrm{Ne}] 3 \mathrm{~s}^{1} 3 \mathrm{p}^{2}$ \square

$\mathbf{1}$	$\mathbf{1}$ Which equation represents a reaction that does take place?

A $\mathrm{Cl}_{2}+2 \mathrm{NaI} \longrightarrow 2 \mathrm{NaCl}+\mathrm{I}_{2}$
B $\mathrm{Br}_{2}+2 \mathrm{NaCl} \longrightarrow 2 \mathrm{NaBr}+\mathrm{Cl}_{2}$
C $\quad \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{HCl}+\mathrm{NaOH}$
D $\quad 2 \mathrm{HCl}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{Cl}_{2}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ \square

| 1 | 2 |
| :--- | :--- |\quad The following equilibrium was established in a container with volume $\mathrm{V} \mathrm{cm}{ }^{3}$ at 393 K and 200 kPa .

$$
\mathrm{M}_{2}(\mathrm{~g})+\mathrm{R}(\mathrm{~g}) \rightleftharpoons \mathrm{RM}_{2}(\mathrm{~g}) \quad \Delta H=+150 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Which change would increase the yield of RM_{2} ?

A change the pressure to 150 kPa

B change the temperature to 293 K
C remove RM_{2} as it is formed
D change the volume of the vessel to $2 \mathrm{~V} \mathrm{~cm}^{3}$

$\mathbf{1}$	$\mathbf{3} \quad$ Which of these shows nitrogen in its correct oxidation states in the compounds given?

$\mathbf{N H}_{3}$	$\mathbf{N}_{2} \mathbf{O}$	$\mathbf{H N O}_{2}$	
\mathbf{A}			
B	+3	-1	+5
C	-3	+3	\square
D	-3	-5	\square
+3	-1	-3	\square

| 1 | $4 \quad$ What is the volume of $0.200 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq})$ required to neutralise exactly |
| :--- | :--- | $30.0 \mathrm{~cm}^{3}$ of $0.100 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}(\mathrm{aq})$?

A $\quad 150.0 \mathrm{~cm}^{3}$

B $\quad 75.0 \mathrm{~cm}^{3}$ 0

C $\quad 15.0 \mathrm{~cm}^{3}$ 0

D $\quad 7.50 \mathrm{~cm}^{3}$ 0

$\mathbf{1}$	$\mathbf{5}$	Which reaction has the largest atom economy for the production of hydrogen?

A $\mathrm{C}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{CO}+\mathrm{H}_{2}$ \square
B $\quad \mathrm{Zn}+2 \mathrm{HCl} \longrightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}$ \square
C $\mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{CO}+3 \mathrm{H}_{2}$
D $\mathrm{CO}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{CO}_{2}+\mathrm{H}_{2}$ \square

1	6	Which species is the best oxidising agent?

A $\mathrm{Cl}_{2} \quad 0$
B Cl^{-}

C $\quad \mathrm{Br}_{2}$

D Br^{-} \square

| 1 | $\mathbf{7}$ | Which of these correctly shows the numbers of sub-atomic particles in $\mathrm{a}^{41} \mathrm{~K}^{+}$ion? |
| :--- | :--- | :--- | [1 mark]

	Number of electrons	Number of protons	Number of neutrons
A	19	19	20
B	18	20	21
C	18	19	22
		0	
D	19	18	23

18 After reaction of some zinc metal with excess sulfuric acid, a student collected 40.8 g of $\mathrm{ZnSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ crystals. The yield of crystals was 70.0%.

What was the original mass of zinc used?

A $\quad 9.28 \mathrm{~g}$

B $\quad 13.3 \mathrm{~g}$ \bigcirc

C $\quad 23.6 \mathrm{~g}$

D $\quad 58.3 \mathrm{~g}$ \square

Turn over for the next question

1	9	Which of these is a redox reaction?

$\mathrm{A} \quad \mathrm{CaO}+\mathrm{SiO}_{2} \longrightarrow \mathrm{CaSiO}_{3}$

B $\quad \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{Na}_{2} \mathrm{O} \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}$ \square
C $\quad \mathrm{NaBr}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{NaHSO}_{4}+\mathrm{HBr}$ \square
D $\quad \mathrm{Mg}+\mathrm{S} \longrightarrow \mathrm{MgS}$ \square

| $\mathbf{2}$ | $\mathbf{0} \quad 2.40 \mathrm{~g}$ of an explosive, J , contains 0.473 g of nitrogen. J also contains 33.8% carbon,$~$ |
| :--- | :--- | and 1.41% hydrogen by mass. The remainder of J is oxygen.

What is the empirical formula of J ?

A $\quad \mathrm{C}_{4} \mathrm{HNO}_{2}$
B $\quad \mathrm{CH}_{2} \mathrm{~N}_{2} \mathrm{O}$ \square
C $\quad \mathrm{C}_{2} \mathrm{HNO}_{2}$ \square
D CHNO \square

| 2 | 1 |
| :--- | :--- | What is the number of atoms in 0.0100 mol of NH_{3} ?

(The Avogadro constant $\mathrm{L}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$)

A $\quad 6.02 \times 10^{25}$

B $\quad 1.20 \times 10^{23}$
C $\quad 1.81 \times 10^{22}$

D $\quad 2.41 \times 10^{22}$

END OF QUESTIONS

There are no questions printed on this page

DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

[^0]: ${ }^{24} \mathrm{Mg}$ percentage $=$ \qquad $\%$
 ${ }^{26} \mathrm{Mg}$ percentage $=$ \%

