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1 The curve C1 has parametric equations x = t2, y = t3, where −∞ < t < ∞. Let O denote the point
(0, 0). The points P and Q on C1 are such that ∠POQ is a right angle. Show that the tangents to C1

at P and Q intersect on the curve C2 with equation 4y2 = 3x− 1.

Determine whether C1 and C2 meet, and sketch the two curves on the same axes.

Solution by riquix.

Let t = p at P and t = q at Q. Then P is (p2, p3) and Q is (q2, q3).

Then line OP has gradient
p3 − 0

p2 − 0
= p, and line OQ has gradient q.

∠POQ is a right angle ⇐⇒ OP is perpendicular to OQ ⇐⇒ pq = −1 ⇐⇒ q = −1

p
.

The gradient of C1 at the point with parameter t is
dy

dx
=

dy

dt
÷ dx

dt
=

3t2

2t
=

3

2
t.

So the tangent to C1 at P has equation y =
3

2
p(x− p2) + p3,

and the tangent at Q has equation y =
3

2
q(x− q2) + q3 = − 3

2p
(x− 1

p2
)− 1

p3
.

=⇒ At the point of intersection between the tangents,
3

2
p(x− p2) + p3 = − 3

2p
(x− 1

p2
)− 1

p3
,

which gives x =
p6 + 1

3p2(p2 + 1)
.

Substituting this into either tangent equation gives y =
1− p2

2p
.

These give 3x− 1 =
p6 − p4 − p2 + 1

p2(p2 + 1)
and 4y2 =

p4 − 2p2 + p4

p2
=
p6 − p4 − p2 + 1

p2(p2 + 1)
,

so 4y2 = 3x− 1 at the point of intersection of the two tangents, meaning it lies on the curve C2.

For the two curves to meet, 4(t3)2 = 3(t2)− 1 ⇐⇒ 4t6 − 3t2 + 1 = 0 ⇐⇒ (t2 + 1)(4t4 − 4t2 + 1) = 0

⇐⇒ (2t2 − 1)2 = 0 ⇐⇒ t = ± 1√
2
.

Hence the two curves do meet, at the points

(
1

2
, ± 1

2
√

2

)
.
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2 Use the factor theorem to show that a+ b− c is a factor of

(a+ b+ c)3 − 6(a+ b+ c)(a2 + b2 + c2) + 8(a3 + b3 + c3). (∗)

Hence factorise (∗) completely.

(i) Use the result above to solve the equation

(x+ 1)3 − 3(x+ 1)(2x2 + 5) + 2(4x3 + 13) = 0.

(ii) By setting d+ e = c, or otherwise, show that (a+ b− d− e) is a factor of

(a+ b+ d+ e)3 − 6(a+ b+ d+ e)(a2 + b2 + d2 + e2) + 8(a3 + b3 + d3 + e3)

and factorise this expression completely.

Hence solve the equation

(x+ 6)3 − 6(x+ 6)(x2 + 14) + 8(x3 + 36) = 0.

Solution by Hauss.

Let f(a, b, c) = (a+ b+ c)3 − 6(a+ b+ c)(a2 + b2 + c2) + 8(a3 + b3 + c3).

f(a, b, a+ b) = 0, as shown by some algebraic manipulation after substituting in a+ b for c.

=⇒ (a+ b− c) is a factor of f(a, b, c).

f(a, b, c) is symmetric in a, b, c, so (a− b+ c) and (a− b− c) are also factors.

By consideration of the term with the highest power of a, or by wasting lots of time on algebra, we see

that f(a, b, c) = 3(a+ b− c)(a− b+ c)(a− b− c) .

(i) (x+ 1)3 − 3(x+ 1)(2x2 + 5) + 2(4x3 + 13) = (x+ 1)3 − 6(x+ 1)

(
x2 +

5

2

)
+ 8

(
x3 +

13

4

)
= f

(
x,

3

2
,−1

2

)
= 3(x− 2)(x− 1)(x+ 2) = 0 =⇒ x = 1, x = 2, x = −2 .

(ii) Let g(a, b, d, e) = (a+ b+ d+ e)3 − 6(a+ b+ d+ e)(a2 + b2 + d2 + e2) + 8(a3 + b3 + d3 + e3)

Using d+ e = c gives g(a, b, d, e) = f(a, b, c) + 12(a+ b+ c)de− 24cde

f(a, b, c) has a factor (a+ b− c) = (a+ b− d− e), and when a+ b = c, 12(a+ b+ c)de− 24cde = 0

=⇒ 12(a+ b+ c)de− 24cde has a factor (a+ b− c) = (a+ b− d− e) =⇒ g(a, b, d, e) has a factor (a+
b− d− e).
As g(a, b, d, e) is symmetric in a, b, d, and e, g(a, b, d, e) has factors (a− b+ d− e) and (a− b− d+ e).

By consideration of the term with the highest power of a, or by wasting lots more time on algebra, we see

that g(a, b, d, e) = 3(a+ b− d− e)(a− b+ d− e)(a− b− d+ e) .

Finally, g(x, 1, 2, 3) = (x+6)3−6(x+6)(x2+14)+8(x3+36) = 3x(x−2)(x−4) =⇒ x = 0, x = 2, x = 4 .
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3 For each non-negative integer n, the polynomial fn is defined by

fn(x) = 1 + x+
x2

2!
+
x3

3!
+ · · ·+ xn

n!
.

(i) Show that f ′n(x) = fn−1(x) (for n > 1).

(ii) Show that, if a is a real root of the equation

fn(x) = 0, (∗)

then a < 0.

(iii) Let a and b be distinct real roots of (∗), for n > 2. Show that f ′n(a) f ′n(b) > 0 and use a sketch to
deduce that fn(c) = 0 for some number c between a and b.

Deduce that (∗) has at most one real root. How many real roots does (∗) have if n is odd? How
many real roots does (∗) have if n is even?

Solution by StrangeBanana.

(i) fn(x) = 1 + x+
x2

2!
+
x3

3!
+ · · ·+ xn

n!

=⇒ f ′n(x) = 0 + 1 +
2x

2!
+

3x2

3!
+ · · ·+ nxn−1

n!
= 1 + x+

x2

2!
+ · · ·+ xn−1

(n− 1)!
= fn−1(x)

(ii) If fn(a) = 0 for some a > 0, then

1 + a+
a2

2!
+
a3

3!
+ · · ·+ an

n!
= 0, but the LHS is a sum of positive terms, and hence greater than 0.

This is therefore a contradiction, so any root a must satisfy a < 0.

(iii) With two roots a and b, taking a < b, we have f ′n(a) = fn−1(a) = fn(a)− an

n!
= −a

n

n!
,

and similarly, f ′n(b) = −b
n

n!
, so f ′n(a) f ′n(b) =

(ab)n

(n!)2
.

By part (ii), we have a, b < 0 so ab > 0 =⇒ (ab)n > 0 =⇒ f ′n(a) f ′n(b) > 0, as required.
This means that f ′n(a) and f ′n(b) have the same sign.

Clearly, if the gradient is positive (or negative) at both roots, the curve must intersect the x axis
somewhere between the two to maintain continuity. But this means that between any two roots of
fn(x) = 0 is another distinct root, so we can find infinitely many roots.
As fn is an n-degree polynomial, it can only have up to n real roots, so assuming that we have
two distinct roots causes a contradiction. Hence, fn(x) = 0 has at most 1 real root.

This root cannot be repeated, as for any root x 6= 0 (as fn(0) ≡ 1) , f ′n(x) = −x
n

n!
6= 0.

To have real coefficients, the function must have an even number of non-real roots, so

odd n =⇒ 1 real root, and even n =⇒ 0 real roots .
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4 Let

y =
x2 + x sin θ + 1

x2 + x cos θ + 1
.

(i) Given that x is real, show that

(y cos θ − sin θ)2 > 4(y − 1)2.

Deduce that
y2 + 1 > 4(y − 1)2,

and hence that
4−
√

7

3
6 y 6

4 +
√

7

3
.

(ii) In the case y =
4 +
√

7

3
, show that √

y2 + 1 = 2(y − 1)

and find the corresponding values of x and tan θ.

Solution by StrangeBanana.

(i) Rearrange the equation for y to a quadratic in x :
(y − 1)x2 + (y cos θ − sin θ)x+ (y − 1) = 0
As x is real, the discriminant of this must be non-negative.

=⇒ (y cos θ − sin θ)2 − 4(y − 1)2 > 0 =⇒ (y cos θ − sin θ)2 > 4(y − 1)2 , as required.

Consider y2 + 1− (y cos θ − sin θ)2 = y2(1− cos2 θ) + 2y cos θ sin θ + 1− sin2 θ
= (y sin θ)2 + 2y sin θ cos θ + cos2 θ = (y sin θ + cos θ)2 > 0

=⇒ y2 + 1 > (y cos θ − sin θ)2 > 4(y − 1)2 =⇒ y2 + 1 > 4(y − 1)2 , as required.

=⇒ 3y2 − 8y + 3 6 0 =⇒

(
y − 4−

√
7

3

)(
y − 4 +

√
7

3

)
6 0 =⇒ 4−

√
7

3
6 y 6

4 +
√

7

3
.

(ii) This y value is a solution to 3y2 − 8y + 3 = 0 from part (i).

=⇒ y2 + 1 = 4(y − 1)2 =⇒
√
y2 + 1 = 2(y − 1)

(
noting that y − 1 =

1 +
√

7

3
> 0

)
.

Given that y2 + 1 > (y cos θ − sin θ)2 > 4(y − 1)2 and y2 + 1 = 4(y − 1)2,
y2 + 1 = (y cos θ − sin θ)2 =⇒ y2 + 1− (y cos θ − sin θ)2 = (y sin θ + cos θ)2 = 0 =⇒ y = − cot θ

=⇒ tan θ = −1

y
=

−3

4 +
√

7
=

√
7− 4

3
=⇒ tan θ =

√
7− 4

3
.

And because the discriminant of the original quadratic in x is now 0,

x =
−b
2a

=
sin θ − y cos θ

2(y − 1)
= ±

√
(sin θ − y cos θ)2

4(y − 1)2
= ±
√

1 = ±1 =⇒ x = ±1 .
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5 In this question, the definition of

(
p

q

)
is taken to be

(
p

q

)
=


p!

q!(p− q)!
if p > q > 0,

0 otherwise.

(i) Write down the coefficient of xn in the binomial expansion for (1 − x)−N , where N is a positive
integer, and write down the expansion using the Σ summation notation.

By considering (1− x)−1(1− x)−N , where N is a positive integer, show that

n∑
j=0

(
N + j − 1

j

)
=

(
N + n

n

)
.

(ii) Show that, for any positive integers m, n, and r with r 6 m+ n,(
m+ n

r

)
=

r∑
j=0

(
m

j

)(
n

r − j

)
.

(iii) Show that, for any positive integers m and N ,

n∑
j=0

(−1)j
(
N +m

n− j

)(
m+ j − 1

j

)
=

(
N

n

)
.

Solution by Hauss.

(i) Coefficient of xn in the expansion of (1− x)−N is
(
N+n−1

n

)
.

=⇒ (1− x)−N =

∞∑
j=0

(
N + j − 1

j

)
xj .

Coefficient of xn−j in the expansion of (1− x)−1 is 1.
Coefficient of xj in the expansion of (1− x)−N is

(
N+j−1

j

)
.

Coefficient of xn in the expansion of (1− x)−N−1 is
(
N+n
n

)
.

=⇒
n∑
j=0

(0)

(
N + j − 1

j

)
=

(
N + n

n

)
, as required.

(ii) Coefficient of xr−j in the expansion of (1 + x)n is
(
n
r−j
)
.

Coefficient of xj in the expansion of (1 + x)m is
(
m
j

)
.

Coefficient of xr in the expansion of (1 + x)m+n is
(
m+n
r

)
.

=⇒
r∑
j=0

(
m

j

)(
n

r − j

)
=

(
m+ n

r

)
, as required.

(iii) Coefficient of xj in the expansion of (1 + x)−m is (−1)j
(
m+j−1

j

)
.

Coefficient of xn−j in the expansion of (1 + x)m+N is
(
N+m
n−j

)
.

Coefficient of xn in the expansion of (1 + x)N is
(
N
n

)
.

=⇒
n∑
j=0

(−1)j
(
N +m

n− j

)(
m+ j − 1

j

)
=

(
N

n

)
, as required.
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6 This question concerns solutions of the differential equation

(1− x2)

(
dy

dx

)2

+ k2y2 = k2 (∗)

where k is a positive integer.

For each value of k, let yk(x) be the solution of (∗) that satisfies yk(1) = 1; you may assume that there
is only one such solution for each value of k.

(i) Write down the differential equation satisfied by y1(x) and verify that y1(x) = x.

(ii) Write down the differential equation satisfied by y2(x) and verify that y2(x) = 2x2 − 1.

(iii) Let z(x) = 2(yn(x))2 − 1. Show that

(1− x2)

(
dz

dx

)2

+ 4n2z2 = 4n2

and hence obtain an expression for y2n(x) in terms of yn(x).

(iv) Let v(x) = yn(ym(x)). Show that v(x) = ymn(x).

Solution by Mathemagicien.

(i) (1− x2)(dy1
dx )2 + y21 = 1

If y1(x) = x, y1(1) = 1, and (1− x2)(dy1
dx )2 + y21 = 1− x2 + x2 = 1

=⇒ y1(x) = x is a solution =⇒ y1(x) = x is the solution .

(ii) (1− x2)(dy2
dx )2 + 4y22 = 4

If y2(x) = 2x2 − 1, y2(1) = 1, and (1− x2)(dy2
dx )2 + 4y22 = (1− x2)(16x2) + 4(4x4 − 4x2 + 1) = 4

=⇒ y2(x) = 2x2 − 1 is a solution =⇒ y2(x) = 2x2 − 1 is the solution .

(iii) z(x) = 2(yn(x))2 − 1 =⇒ z2 = 4y4n − 4y2n + 1,
dz

dx
= 4yn

dyn
dx

.

By (∗),
(

dyn
dx

)2

=
n2(1− y2n)

1− x2
.

=⇒ (1− x2)( dz
dx )2 + 4n2z2 = 16y2nn

2(1− y2n) + 16n2y4n − 16n2y2n + 4n2 = 4n2, as required.

This is the same as (∗) with k = 2n. Hence, z(x) = y2n(x) = 2(yn(x))2 − 1 .

(iv) v(x) = yn(ym(x)) =⇒ dv

dx
=

dyn(ym(x))

dym(x)
× dym(x)

dx
.

By (∗),
(

dym
dx

)2

=
m2(1− y2m)

1− x2
, and

(
dyn(ym(x))

dym(x)

)2

=
n2(1− (yn(ym(x)))2)

1− (ym(x))2
.

=⇒
(

dv

dx

)2

=
n2(1− (yn(ym(x)))2)

1− (ym(x))2
× m2(1− (ym(x))2)

1− x2
=

(mn)2(1− v2)

1− x2

=⇒ (1− x)2
(

dv

dx

)2

+ (mn)2v2 = (mn)2. This is the differential equation satisfied by ymn(x)

=⇒ v(x) = ymn(x) , as there is only one solution for each k.
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7 Show that ∫ a

0

f(x)dx =

∫ a

0

f(a− x)dx, (∗)

where f is any function for which the integrals exist.

(i) Use (∗) to evaluate ∫ 1
2π

0

sinx

cosx+ sinx
dx.

(ii) Evaluate ∫ 1
4π

0

sinx

cosx+ sinx
dx.

(iii) Evaluate ∫ 1
4π

0

ln(1 + tanx)dx.

(iv) Evaluate ∫ 1
4π

0

x

cosx(cosx+ sinx)
dx.

Solution by KingRS.

Substituting u = a− x gives

∫ a

0

f(x)dx = −
∫ 0

a

f(a− u)du =

∫ a

0

f(a− x)dx, as required.

(i) Call the integral I. The result gives I =

∫ 1
2π

0

cosx

cosx+ sinx
dx =⇒ 2I =

π

2
=⇒ I =

π

4
.

(ii) sin(π4 − x) = 1√
2
(cosx− sinx), cos(π4 − x) = 1√

2
(cosx+ sinx).

Hence, the result gives

∫ 1
4π

0

sinx

cosx+ sinx
dx =

1

2

∫ 1
4π

0

(1− tanx)dx =
1

2
[x+ ln cosx]

1
4π
0 =

π

8
− ln 2

4
.

(iii) Using the values from (ii) with the result, and calling the integral I gives

I =

∫ π
4

0

ln 2dx − I =⇒ 2I =
π

4
ln 2 =⇒ I =

π

8
ln 2 .

(iv) Using the result changes the integral to

π

8

∫ π
4

0

1

cosx(cosx+ sinx)
dx =

π

8

∫ π
4

0

sec2 x

(1 + tanx)
dx =

π

8
[ln(1 + tanx)]

1
4π
0 =

π

8
ln 2 .
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8 Evaluate the integral ∫ ∞
m− 1

2

1

x2
dx (m >

1

2
).

Show by means of a sketch that
n∑

r=m

1

r2
≈
∫ n+ 1

2

m− 1
2

1

x2
dx, (∗)

where m and n are positive integers with m < n.

(i) You are given that the infinite series

∞∑
r=1

1

r2
converges to a value denoted by E. Use (∗) to obtain

the following approximations for E:

E ≈ 2; E ≈ 5

3
; E ≈ 33

20
.

(ii) Show that, when r is large, the error in approximating
1

r2
by

∫ r+ 1
2

r− 1
2

1

x2
dx is approximately

1

4r4
.

Given that E ≈ 1.645, show that

∞∑
r=1

1

r4
≈ 1.08.

Solution by Mathemagicien.∫ ∞
m− 1

2

1

x2
dx =

2

2m− 1
.

Clearly,
1

r2
≈
∫ r+ 1

2

r− 1
2

1

x2
dx for r > 1. =⇒

n∑
r=m

1

r2
≈
∫ n+ 1

2

m− 1
2

1

x2
dx for suitable m and n.

(i) We extend this to

∞∑
r=m

1

r2
≈
∫ ∞
m− 1

2

1

x2
dx =

2

2m− 1
, as we are given that the LHS exists.

=⇒ E =

∞∑
r=1

1

r2
≈ 2

2m− 1
+

m−1∑
r=1

1

r2
=⇒ E ≈ 2 + 0 = 2 ,

2

3
+ 1 =

5

3
,

2

5
+ 1 +

1

4
=

33

20
.

(ii) For large r,

∫ r+ 1
2

r− 1
2

1

x2
dx− 1

r2
=

1

r − 1
2

− 1

r + 1
2

− 1

r2
=

1

4(r4 − r2)
≈ 1

4r4
.

=⇒
∞∑
r=m

(
1

r2
+

1

4r4

)
≈
∫ ∞
m− 1

2

1

x2
dx =

2

2m− 1
.

=⇒
∞∑
r=1

1

r4
≈ 8

2m− 1
− 4E +

m−1∑
r=1

(
4

r2
+

1

r4

)
Set m = 3 =⇒

∞∑
r=1

1

r4
≈ 1.6− 6.58 + 4 + 1 + 1 + 0.0625 = 1.0825 ≈ 1.08 .
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9 A small bullet of mass m is fired into a block of wood of mass M which is at rest. The speed of the
bullet on entering the block is u. Its trajectory within the block is a horizontal straight line and the
resistance to the bullet’s motion is R, which is constant.

(i) The block is fixed. The bullet travels a distance a inside the block before coming to rest. Find
an expression for a in terms of m, u, and R.

(ii) Instead, the block is free to move on a smooth horizontal table. The bullet travels a distance b
inside the block before coming to rest relative to the block, at which time the block has moved a
distance c on the table. Find expressions for b and c in terms of M , m, and a.

Y’all have some nice energy arguments, but here’s my suvat (it’s basically the same).

(i) S = a, U = u, V = 0, A = −R
m
, S =

V 2 − U2

2A
=⇒ a =

mu2

2R

Now, I think the question is extremely ambiguous as to whether b is relative to the block or the table,
so I will denote the two possibilities bb and bt, respectively.
(ii) If v is the common speed of the two once the bullet comes to rest relative to the block, then by

Conservation of Linear Momentum, mu = (M +m)v =⇒ v =
mu

M +m
.

S = bt, U = u, V =
mu

M +m
, A = −R

m
, S =

V 2 − U2

2A
=⇒ bt =

Mm(M + 2m)u2

2R(M +m)2
=
M(M + 2m)

(M +m)2
a

S = c, U = 0, V =
mu

M +m
, A =

R

M
, S =

V 2 − U2

2A
=⇒ c =

Mm2u2

2(M +m)2R
=

Mm

(M +m)2
a

bb = bt − c =
M

M +m
a

=⇒ bt =
M(M + 2m)

(M +m)2
a , bb =

M

M +m
a , c =

Mm

(M +m)2
a .
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10 A thin uniform wire is bent into the shape of an isosceles triangle ABC, where AB and AC are of
equal length at the angle at A is 2θ. The triangle ABC hangs on a small rough horizontal peg with the
side BC resting on the peg. The coefficient of friction between the wire and the peg is µ. The plane
containing ABC is vertical. Show that the triangle can rest in equilibrium with the peg in contact
with any point on BC provided

µ > 2 tan θ(1 + sin θ).

Solution by EwanClementson.

Resolving parallel and perpendicular to BC : R = mg sinα, F = mg cosα.
µR > F =⇒ µmg sinα > mg cosα =⇒ µ > cotα.
α is acute and we want the smallest value of tanα for our limiting value.

tanα =
x̄

y
, so the limiting case is when y is as large as possible, so the peg is effectively at B.

In this case, y = a sin θ, where a = |AB|.
x̄ is the perpendicular distance from BC to the centre of mass.

1
2a cos θ(2a)ρ = (2a+ 2a sin θ)ρx̄ =⇒ x̄ =

a cos θ

2(1 + sin θ)
.

tanα =
a cos θ

2(1 + sin θ)
÷ a sin θ =

1

2 tan θ(1 + sin θ)
=⇒ cotα = 2 tan θ(1 + sin θ).

µ > cotα > 2 tan θ(1 + sin θ) =⇒ µ > 2 tan θ(1 + sin θ) .

10



11 (i) Two particles move on a smooth horizontal surface. The positions, in Cartesian coordinates, of
the particles at time t are (a+ ut cosα, ut sinα) and (vt cosβ, b+ vt sinβ), where a, b, u, and v
are positive constants, alpha and β are constant acute angles, and t > 0.

Given that the two particles collide, show that

u sin(θ + α) = v sin(θ + β),

where θ is the acute angle satisfying tan θ =
b

a
.

(ii) A gun is placed on the top of a vertical tower of height b which stands on horizontal ground.
The gun fires a bullet with speed v and (acute) angle of elevation β. Simultaneously, a target
is projected from a point on the ground a horizontal distance a from the foot of the tower. The
target is projected with speed u and (acute) angle of elevation α, in a direction directly away from
the tower.

Given that the target is hit before it reaches the ground, show that

2u sinα(u sinα− v sinβ) > bg.

Explain, with reference to part (i), why the target can only be hit if α > β.

Solution by Farhan.Hanif93.

(i) Equating the two pairs of components and arranging for t gives

t =
a

v cosβ − u cosα
=

b

u sinα− v sinβ
=⇒ u(a sinα+ b cosα) = v(a sinβ + b cosβ)

=⇒ u sin(θ + α) = v sin(θ + β)

(ii) At time t, the bullet and target have coordinates
(vt cosβ, b+ vt sinβ − 1

2gt
2) and (a+ ut cosα, ut sinα− 1

2gt
2), respectively.

Let T denote the time of collision, and T0 denote the time at which the target reaches the ground.

Then uT sinα− 1
2gT

2 = b+ vT sinβ − 1
2gT

2 =⇒ T =
b

u sinα− v sinβ
,

and uT0 sinα− 1
2gT

2
0 = 0, T0 6= 0 =⇒ T0 =

2u sinα

g
.

They collide before the target reaches the ground, so T0 > T =⇒ 2u sinα(u sinα− v sinβ) > bg .

The coordinates of the bullet and target are equivalent to those of the two particles in part (i), as
equating the y components cancels out the − 1

2gt
2 term that distinguishes them.

As 2, u, sinα, b, g > 0, 2u sinα(u sinα− v sinβ) > bg =⇒ u sinα > v sinβ.
As per (i), u(a sinα+ b cosα) = v(a sinβ + b cosβ) =⇒ a(u sinα− v sinβ) = b(v cosβ − u cosα)
=⇒ v cosβ > u cosα as a, b > 0.

=⇒ v cosβ

u cosα
> 1 >

v sinβ

u sinα
=⇒ tanα > tanβ =⇒ α > β , as α, β are acute.
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12 Starting with the result P(A ∪B) = P(A) + P(B)− P(A ∩B), prove that

P(A ∪B ∪ C) = P(A) + P(B) + P(C)− P(A ∩B)− P(B ∩ C)− P(C ∩A) + P(A ∩B ∩ C).

Write down, without proof, the corresponding result for four events A, B, C, and D.

A pack of n cards, numbered 1, 2, . . . , n, is shuffled and laid out in a row. The result of the shuffle
is that each card is equally likely to be in any position in the row. Let Ei be the event that the card
bearing the number i is in the ith position in the row. Write down the following probabilities:

(i) P(Ei);

(ii) P(Ei ∩ Ej), where i 6= j;

(iii) P(Ei ∩ Ej ∩ Ek), where i 6= j, j 6= k and k 6= i.

Hence show that the probability that at least one card is in the same position as the number it bears
is

1− 1

2!
+

1

3!
− · · ·+ (−1)n+1 1

n!
.

Find the probability that exactly one card is in the same position as the number it bears.

Solution by EwanClementson.

P(A ∪B ∪ C) = P((A ∪B) ∪ C) = P(A ∪B) + P(C)− P((A ∪B) ∩ C).
P((A ∪B) ∩ C) = P((A ∩B) ∪ (A ∩ C)) = P(A ∩B) + P(A ∩ C)− P(A ∩B ∩ C).
=⇒ P(A ∪B ∪ C) = P(A) + P(B) + P(C)− P(A ∩B)− P(B ∩ C)− P(C ∩A) + P(A ∩B ∩ C).

(i) P(Ei) =
1

n

(ii) P(Ei ∩ Ej) =
1

n(n− 1)

(iii) P(Ei ∩ Ej ∩ Ek) =
1

n(n− 1)(n− 2)

There are

(
n

r

)
ways for r of the n cards to be correct, with probability

(n− r)!
n!

.

P(at least one card is in the same position as the number it bears) = P(E1 ∪ E2 ∪ · · · ∪ En)

=

(
n

1

)
1

n
−
(
n

2

)
1

n(n− 1)
+

(
n

3

)
1

n(n− 1)(n− 2)
− · · ·+ (−1)n+1

(
n

n

)
1

n(n− 1)(n− 2) · · · 1

=
n!(n− 1)!

1!(n− 1)!n!
− n!(n− 2)!

2!(n− 2)!n!
+

n!(n− 3)!

3!(n− 3)!n!
− · · ·+ (−1)n+1 n!(n− n)!

n!(n− n)!n!

= 1− 1

2!
+

1

3!
− · · ·+ (−1)n+1 1

n!
, as required.

P(Exactly one correct) = nP(One chosen correct, all others wrong).
P(1 chosen correct) = 1

n

P((n− 1) all wrong) = 1− P(At least one right out of (n− 1)) =
1

2!
− 1

3!
+

1

4!
− · · ·+ (−1)n

1

(n− 1)!

=⇒ P(Exactly one correct) = n× 1

n
×
(

1

2!
− 1

3!
+

1

4!
− · · ·+ (−1)n

1

(n− 1)!

)
=⇒ P(Exactly one correct) =

1

2!
− 1

3!
+

1

4!
− · · ·+ (−1)n

1

(n− 1)!
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13 (i) The random variable X has a binomial distribution with parameters n and p, where n = 16 and

p = 1
2 . Show, using an approximation in terms of the standard normal density function 1√

2π
e−

1
2x

2

,

that

P(X = 8) ≈ 1

2
√

2π
.

(ii) By considering a binomial distribution with parameters 2n and 1
2 , show that

(2n)! ≈ 22n(n!)2√
nπ

.

(iii) By considering a Poisson distribution with parameter n, show that

n! ≈
√

2πn e−n nn.

Solution by Mathemagicien.

(i) X ∼ B(16, 12 ) ≈ Y ∼ N(8, 22).
=⇒ P(X = 8) ≈ P(7.5 < Y < 8.5) = P(7.5 < 2Z + 8 < 8.5) = P(−0.25 < Z < 0.25)

=

∫ 1
4

− 1
4

1√
2π

e−
1
2x

2

dx ≈
∫ 1

4

− 1
4

1√
2π

dx =
2

4

1√
2π

=
1

2
√

2π
=⇒ P(X = 8) ≈ 1

2
√

2π
.

(ii) Let A ∼ B(2n, 12 ) ≈ N(n, n2 ) =⇒ P(A = n) ≈ P(n− 1
2 <

√
n
2Z + n < n+ 1

2 ).

=⇒
(

2n

n

)(
1

2

)2n

≈ P

(
− 1√

2n
< Z <

1√
2n

)
=

∫ 1√
2n

− 1√
2n

1√
2π

e−
1
2x

2

dx ≈ 2√
2n
√

2π
.

=⇒ (2n)! ≈ 22n(n!)2√
nπ

.

(iii) Let E ∼ Po(n) ≈ N(n, n) =⇒ P(E = n) =
e−n nn

n!
≈ P(n− 1

2 <
√
nZ + n < n+ 1

2 ).

=⇒ e−n nn

n!
≈
∫ 1

2
√
π

− 1
2
√
π

1√
2π

e−
1
2x

2

dx ≈ 2

2
√
n
√

2π
=⇒ n! ≈

√
2πn e−n nn .
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