## STEP II 2016 Solutions

Harry Farnworth

June 21, 2016

1 The curve  $C_1$  has parametric equations  $x = t^2$ ,  $y = t^3$ , where  $-\infty < t < \infty$ . Let O denote the point (0,0). The points P and Q on  $C_1$  are such that  $\angle POQ$  is a right angle. Show that the tangents to  $C_1$  at P and Q intersect on the curve  $C_2$  with equation  $4y^2 = 3x - 1$ .

Determine whether  $C_1$  and  $C_2$  meet, and sketch the two curves on the same axes.

Solution by riquix.

Let t = p at P and t = q at Q. Then P is  $(p^2, p^3)$  and Q is  $(q^2, q^3)$ . Then line OP has gradient  $\frac{p^3 - 0}{p^2 - 0} = p$ , and line OQ has gradient q.  $\angle POQ$  is a right angle  $\iff OP$  is perpendicular to  $OQ \iff pq = -1 \iff q = -\frac{1}{p}$ . The gradient of  $C_1$  at the point with parameter t is  $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt} = \frac{3t^2}{2t} = \frac{3}{2}t$ . So the tangent to  $C_1$  at P has equation  $y = \frac{3}{2}p(x - p^2) + p^3$ , and the tangent at Q has equation  $y = \frac{3}{2}q(x - q^2) + q^3 = -\frac{3}{2p}(x - \frac{1}{p^2}) - \frac{1}{p^3}$ .  $\implies$  At the point of intersection between the tangents,  $\frac{3}{2}p(x - p^2) + p^3 = -\frac{3}{2p}(x - \frac{1}{p^2}) - \frac{1}{p^3}$ , which gives  $x = \frac{p^6 + 1}{3p^2(p^2 + 1)}$ . Substituting this into either tangent equation gives  $y = \frac{1 - p^2}{2p}$ .

Substituting this into either tangent equation gives  $y = \frac{1-p^2}{2p}$ . These give  $3x - 1 = \frac{p^6 - p^4 - p^2 + 1}{p^2(p^2 + 1)}$  and  $4y^2 = \frac{p^4 - 2p^2 + p^4}{p^2} = \frac{p^6 - p^4 - p^2 + 1}{p^2(p^2 + 1)}$ , so  $4y^2 = 3x - 1$  at the point of intersection of the two tangents, meaning it lies on the curve  $C_2$ .

For the two curves to meet,  $4(t^3)^2 = 3(t^2) - 1 \iff 4t^6 - 3t^2 + 1 = 0 \iff (t^2 + 1)(4t^4 - 4t^2 + 1) = 0$  $\iff (2t^2 - 1)^2 = 0 \iff t = \pm \frac{1}{\sqrt{2}}.$ 

Hence the two curves do meet, at the points  $\left(\frac{1}{2}, \pm \frac{1}{2\sqrt{2}}\right)$ .



**2** Use the factor theorem to show that a + b - c is a factor of

$$(a+b+c)^3 - 6(a+b+c)(a^2+b^2+c^2) + 8(a^3+b^3+c^3).$$
(\*)

Hence factorise (\*) completely.

(i) Use the result above to solve the equation

$$(x+1)^3 - 3(x+1)(2x^2+5) + 2(4x^3+13) = 0.$$

(ii) By setting d + e = c, or otherwise, show that (a + b - d - e) is a factor of

$$(a+b+d+e)^3 - 6(a+b+d+e)(a^2+b^2+d^2+e^2) + 8(a^3+b^3+d^3+e^3)$$

and factorise this expression completely.

Hence solve the equation

$$(x+6)^3 - 6(x+6)(x^2+14) + 8(x^3+36) = 0.$$

## Solution by Hauss.

Let  $f(a, b, c) = (a + b + c)^3 - 6(a + b + c)(a^2 + b^2 + c^2) + 8(a^3 + b^3 + c^3).$ f(a, b, a + b) = 0, as shown by some algebraic manipulation after substituting in a + b for c.  $\implies (a+b-c)$  is a factor of f(a,b,c). f(a, b, c) is symmetric in a, b, c, so (a - b + c) and (a - b - c) are also factors. By consideration of the term with the highest power of a, or by wasting lots of time on algebra, we see that f(a, b, c) = 3(a + b - c)(a - b + c)(a - b - c)(i)  $(x+1)^3 - 3(x+1)(2x^2+5) + 2(4x^3+13) = (x+1)^3 - 6(x+1)\left(x^2 + \frac{5}{2}\right) + 8\left(x^3 + \frac{13}{4}\right)$  $= f\left(x, \frac{3}{2}, -\frac{1}{2}\right) = 3(x-2)(x-1)(x+2) = 0 \implies \boxed{x=1, \ x=2, \ x=-2}$ (ii) Let  $g(a, b, d, e) = (a + b + d + e)^3 - 6(a + b + d + e)(a^2 + b^2 + d^2 + e^2) + 8(a^3 + b^3 + d^3 + e^3)$ Using d + e = c gives g(a, b, d, e) = f(a, b, c) + 12(a + b + c)de - 24cdef(a, b, c) has a factor (a + b - c) = (a + b - d - e), and when a + b = c, 12(a + b + c)de - 24cde = 0 $\implies 12(a+b+c)de - 24cde$  has a factor  $(a+b-c) = (a+b-d-e) \implies g(a,b,d,e)$  has a factor (a+b-c) = (a+b-d-e)b-d-e). As g(a, b, d, e) is symmetric in a, b, d, and e, g(a, b, d, e) has factors (a - b + d - e) and (a - b - d + e). By consideration of the term with the highest power of a, or by wasting lots more time on algebra, we see that |g(a, b, d, e) = 3(a + b - d - e)(a - b + d - e)(a - b - d + e)|Finally,  $g(x, 1, 2, 3) = (x+6)^3 - 6(x+6)(x^2+14) + 8(x^3+36) = 3x(x-2)(x-4) \implies x=0, x=2, x=4$ 

**3** For each non-negative integer n, the polynomial  $f_n$  is defined by

$$f_n(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!}.$$

- (i) Show that  $f'_n(x) = f_{n-1}(x)$  (for  $n \ge 1$ ).
- (ii) Show that, if a is a real root of the equation

$$\mathbf{f}_n(x) = 0,\tag{(*)}$$

then a < 0.

(iii) Let a and b be distinct real roots of (\*), for  $n \ge 2$ . Show that  $f'_n(a) f'_n(b) > 0$  and use a sketch to deduce that  $f_n(c) = 0$  for some number c between a and b.

Deduce that (\*) has at most one real root. How many real roots does (\*) have if n is odd? How many real roots does (\*) have if n is even?

Solution by StrangeBanana.

(i)  $f_n(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!}$  $\implies f'_n(x) = 0 + 1 + \frac{2x}{2!} + \frac{3x^2}{3!} + \dots + \frac{nx^{n-1}}{n!} = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^{n-1}}{(n-1)!} = f_{n-1}(x)$ 

(ii) If  $f_n(a) = 0$  for some  $a \ge 0$ , then  $1 + a + \frac{a^2}{2!} + \frac{a^3}{3!} + \dots + \frac{a^n}{n!} = 0$ , but the LHS is a sum of non-negative terms (including at least one positive term), and hence greater than 0. This is therefore a contradiction, so any root a must satisfy a < 0.

(iii) With two roots a and b, taking a < b, we have  $f'_n(a) = f_{n-1}(a) = f_n(a) - \frac{a^n}{n!} = -\frac{a^n}{n!}$ , and similarly,  $f'_n(b) = -\frac{b^n}{n!}$ , so  $f'_n(a) f'_n(b) = \frac{(ab)^n}{(n!)^2}$ . By part (ii), we have a, b < 0 so  $ab > 0 \implies (ab)^n > 0 \implies f'_n(a) f'_n(b) > 0$ , as required. This means that  $f'_n(a)$  and  $f'_n(b)$  have the same sign.



Clearly, if the gradient is positive (or negative) at both roots, the curve must intersect the x axis somewhere between the two to maintain continuity. But this means that between any two roots of  $f_n(x) = 0$  is another distinct root, so we can find infinitely many roots.

As  $f_n$  is an n-degree polynomial, it can only have up to n real roots, so assuming that we have two distinct roots causes a contradiction. Hence,  $f_n(x) = 0$  has at most 1 real root.

This root cannot be repeated, as for any root  $x \neq 0$  (as  $f_n(0) \equiv 1$ ),  $f'_n(x) = -\frac{x^n}{n!} \neq 0$ . To have real coefficients, the function must have an even number of non-real roots, so odd  $n \implies 1$  real root, and even  $n \implies 0$  real roots. **4** Let

$$y = \frac{x^2 + x\sin\theta + 1}{x^2 + x\cos\theta + 1}.$$

(i) Given that x is real, show that

$$(y\cos\theta - \sin\theta)^2 \ge 4(y-1)^2.$$

Deduce that

$$y^2 + 1 \ge 4(y - 1)^2$$
,

and hence that

$$\frac{4-\sqrt{7}}{3} \leqslant y \leqslant \frac{4+\sqrt{7}}{3}.$$

(ii) In the case  $y = \frac{4 + \sqrt{7}}{3}$ , show that

$$\sqrt{y^2 + 1} = 2(y - 1)$$

and find the corresponding values of x and  $\tan\theta.$ 

Solution by StrangeBanana.

$$\begin{array}{ll} (\mathbf{i}) & \operatorname{Rearrange} \text{ the equation for } y \text{ to a quadratic in } x : \\ (y-1)x^2 + (y\cos\theta - \sin\theta)x + (y-1) = 0 \\ \operatorname{As } x \text{ is real, the discriminant of this must be non-negative.} \\ \Longrightarrow & (y\cos\theta - \sin\theta)^2 - 4(y-1)^2 \geqslant 0 \implies (y\cos\theta - \sin\theta)^2 \geqslant 4(y-1)^2 \\ \text{, as required.} \\ \begin{array}{ll} \operatorname{Consider } y^2 + 1 - (y\cos\theta - \sin\theta)^2 = y^2(1-\cos^2\theta) + 2y\cos\theta\sin\theta + 1 - \sin^2\theta \\ = (y\sin\theta)^2 + 2y\sin\theta\cos\theta + \cos^2\theta = (y\sin\theta + \cos\theta)^2 \geqslant 0 \\ \implies y^2 + 1 \geqslant (y\cos\theta - \sin\theta)^2 \geqslant 4(y-1)^2 \implies y^2 + 1 \geqslant 4(y-1)^2 \\ \text{, as required.} \\ \end{array}$$

$$\begin{array}{ll} \Rightarrow 3y^2 - 8y + 3 \leqslant 0 \implies \left(y - \frac{4 - \sqrt{7}}{3}\right) \left(y - \frac{4 + \sqrt{7}}{3}\right) \leqslant 0 \implies \left(\frac{4 - \sqrt{7}}{3} \leqslant y \leqslant \frac{4 + \sqrt{7}}{3}\right). \\ (\mathbf{ii)} & \text{This } y \text{ value is a solution to } 3y^2 - 8y + 3 = 0 \text{ from part (i).} \\ \implies y^2 + 1 = 4(y-1)^2 \implies \sqrt{y^2 + 1} = 2(y-1) \left(\text{noting that } y - 1 = \frac{1 + \sqrt{7}}{3} > 0\right). \\ \text{Given that } y^2 + 1 \geqslant (y\cos\theta - \sin\theta)^2 \geqslant 4(y-1)^2 \text{ and } y^2 + 1 = 4(y-1)^2, \\ y^2 + 1 = (y\cos\theta - \sin\theta)^2 \implies y^2 + 1 - (y\cos\theta - \sin\theta)^2 = (y\sin\theta + \cos\theta)^2 = 0 \implies y = -\cot\theta \\ \implies \tan\theta = -\frac{1}{y} = \frac{-3}{4 + \sqrt{7}} = \frac{\sqrt{7} - 4}{3} \implies \left(\tan\theta = \frac{\sqrt{7} - 4}{3}\right). \\ \text{And because the discriminant of the original quadratic in } x \text{ is now } 0, \\ x = \frac{-b}{2a} = \frac{\sin\theta - y\cos\theta}{2(y-1)} = \pm \sqrt{\frac{(\sin\theta - y\cos\theta)^2}{4(y-1)^2}} = \pm \sqrt{1} = \pm 1 \implies \overline{x = \pm 1}. \end{array}$$

5 In this question, the definition of  $\begin{pmatrix} p \\ q \end{pmatrix}$  is taken to be

$$\binom{p}{q} = \begin{cases} \frac{p!}{q!(p-q)!} & \text{if } p \ge q \ge 0, \\ 0 & \text{otherwise.} \end{cases}$$

(i) Write down the coefficient of  $x^n$  in the binomial expansion for  $(1-x)^{-N}$ , where N is a positive integer, and write down the expansion using the  $\Sigma$  summation notation.

By considering  $(1-x)^{-1}(1-x)^{-N}$ , where N is a positive integer, show that

$$\sum_{j=0}^{n} \binom{N+j-1}{j} = \binom{N+n}{n}.$$

(ii) Show that, for any positive integers m, n, and r with  $r \leq m + n$ ,

$$\binom{m+n}{r} = \sum_{j=0}^{r} \binom{m}{j} \binom{n}{r-j}.$$

(iii) Show that, for any positive integers m and N,

$$\sum_{j=0}^{n} (-1)^{j} \binom{N+m}{n-j} \binom{m+j-1}{j} = \binom{N}{n}.$$

Solution by Hauss.

(i) Coefficient of 
$$x^n$$
 in the expansion of  $(1-x)^{-N}$  is  $\binom{N+n-1}{n}$   
 $\implies (1-x)^{-N} = \sum_{j=0}^{\infty} \binom{N+j-1}{j} x^j.$ 

Coefficient of  $x^{n-j}$  in the expansion of  $(1-x)^{-1}$  is 1. Coefficient of  $x^j$  in the expansion of  $(1-x)^{-N}$  is  $\binom{N+j-1}{j}$ . Coefficient of  $x^n$  in the expansion of  $(1-x)^{-N-1}$  is  $\binom{N+n}{n}$ .

$$\implies \sum_{j=0}^{n} (0) \binom{N+j-1}{j} = \binom{N+n}{n}, \text{ as required.}$$

(ii) Coefficient of  $x^{r-j}$  in the expansion of  $(1+x)^n$  is  $\binom{n}{r-j}$ . Coefficient of  $x^j$  in the expansion of  $(1+x)^m$  is  $\binom{m}{j}$ . Coefficient of  $x^r$  in the expansion of  $(1+x)^{m+n}$  is  $\binom{m+n}{r}$ .

$$\implies \sum_{j=0}^{r} \binom{m}{j} \binom{n}{r-j} = \binom{m+n}{r}, \text{ as required}$$

(iii) Coefficient of  $x^j$  in the expansion of  $(1+x)^{-m}$  is  $(-1)^j \binom{m+j-1}{j}$ . Coefficient of  $x^{n-j}$  in the expansion of  $(1+x)^{m+N}$  is  $\binom{N+m}{n-j}$ . Coefficient of  $x^n$  in the expansion of  $(1+x)^N$  is  $\binom{N}{n}$ .

$$\implies \sum_{j=0}^{n} (-1)^{j} \binom{N+m}{n-j} \binom{m+j-1}{j} = \binom{N}{n}, \text{ as required.}$$

6 This question concerns solutions of the differential equation

$$(1-x^2)\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 + k^2 y^2 = k^2 \tag{(*)}$$

where k is a positive integer.

For each value of k, let  $y_k(x)$  be the solution of (\*) that satisfies  $y_k(1) = 1$ ; you may assume that there is only one such solution for each value of k.

- (i) Write down the differential equation satisfied by  $y_1(x)$  and verify that  $y_1(x) = x$ .
- (ii) Write down the differential equation satisfied by  $y_2(x)$  and verify that  $y_2(x) = 2x^2 1$ .
- (iii) Let  $z(x) = 2(y_n(x))^2 1$ . Show that

$$(1-x^2)\left(\frac{\mathrm{d}z}{\mathrm{d}x}\right)^2 + 4n^2z^2 = 4n^2$$

and hence obtain an expression for  $y_{2n}(x)$  in terms of  $y_n(x)$ .

(iv) Let  $v(x) = y_n(y_m(x))$ . Show that  $v(x) = y_{mn}(x)$ .

Solution by Mathemagicien.

(i) 
$$(1 - x^2)(\frac{dy_1}{dx})^2 + y_1^2 = 1$$
  
If  $y_1(x) = x$ ,  $y_1(1) = 1$ , and  $(1 - x^2)(\frac{dy_1}{dx})^2 + y_1^2 = 1 - x^2 + x^2 = 1$   
 $\Rightarrow y_1(x) = x$  is a solution  $\Rightarrow y_1(x) = x$  is the solution.  
(ii)  $(1 - x^2)(\frac{dy_2}{dx})^2 + 4y_2^2 = 4$   
If  $y_2(x) = 2x^2 - 1$ ,  $y_2(1) = 1$ , and  $(1 - x^2)(\frac{dy_2}{dx})^2 + 4y_2^2 = (1 - x^2)(16x^2) + 4(4x^4 - 4x^2 + 1) = 4$   
 $\Rightarrow y_2(x) = 2x^2 - 1$  is a solution  $\Rightarrow y_2(x) = 2x^2 - 1$  is the solution.  
(iii)  $z(x) = 2(y_n(x))^2 - 1 \Rightarrow z^2 = 4y_n^4 - 4y_n^2 + 1$ ,  $\frac{dz}{dx} = 4y_n \frac{dy_n}{dx}$ .  
By  $(*)$ ,  $(\frac{dy_n}{dx})^2 = \frac{n^2(1 - y_n^2)}{1 - x^2}$ .  
 $\Rightarrow (1 - x^2)(\frac{dx}{dx})^2 + 4n^2z^2 = 16y_n^2n^2(1 - y_n^2) + 16n^2y_n^4 - 16n^2y_n^2 + 4n^2 = 4n^2$ , as required.  
This is the same as  $(*)$  with  $k = 2n$ . Additionally,  $z(1) = 2(y_n(1))^2 - 1 = 2 - 1 = 1$ .  
Hence,  $z(x) = [y_{2n}(x) = 2(y_n(x))^2 - 1]$ .  
(iv)  $v(x) = y_n(y_m(x)) \Rightarrow \frac{dv}{dx} = \frac{dy_n(y_m(x))}{dy_m(x)} \times \frac{dy_m(x)}{dx}$ .  
By  $(*)$ ,  $(\frac{dy_m}{dx})^2 = \frac{m^2(1 - y_m^2)}{1 - x^2}$ , and  $(\frac{dy_n(y_m(x))}{dy_m(x)})^2 = \frac{n^2(1 - (y_n(y_m(x)))^2)}{1 - (y_m(x))^2}$ .  
 $\Rightarrow (\frac{dv}{dx})^2 = \frac{n^2(1 - (y_n(y_m(x)))^2)}{1 - (y_m(x))^2} \times \frac{m^2(1 - (y_m(x))^2)}{1 - x^2} = \frac{(mn)^2(1 - v^2)}{1 - x^2}$   
 $\Rightarrow (1 - x)^2(\frac{dv}{dx})^2 + (mn)^2v^2 = (mn)^2$ . This is the differential equation satisfied by  $y_{mn}(x)$   
 $\Rightarrow \overline{v(x) = y_{mn}(x)}$ , as there is only one solution for each  $k$ .

7 Show that

$$\int_0^a \mathbf{f}(x) \mathrm{d}x = \int_0^a \mathbf{f}(a - x) \mathrm{d}x,\tag{*}$$

where f is any function for which the integrals exist.

(i) Use (\*) to evaluate

$$\int_0^{\frac{1}{2}\pi} \frac{\sin x}{\cos x + \sin x} \mathrm{d}x.$$

(ii) Evaluate

$$\int_0^{\frac{1}{4}\pi} \frac{\sin x}{\cos x + \sin x} \mathrm{d}x.$$
$$\int_0^{\frac{1}{4}\pi} \ln(1 + \tan x) \mathrm{d}x.$$

(iv) Evaluate

(iii) Evaluate

$$\int_0^{\frac{1}{4}\pi} \frac{x}{\cos x (\cos x + \sin x)} \mathrm{d}x$$

Solution by KingRS.

Substituting 
$$u = a - x$$
 gives  $\int_{0}^{a} f(x)dx = -\int_{a}^{0} f(a - u)du = \int_{0}^{a} f(a - x)dx$ , as required.  
(i) Call the integral *I*. The result gives  $I = \int_{0}^{\frac{1}{2}\pi} \frac{\cos x}{\cos x + \sin x} dx \implies 2I = \frac{\pi}{2} \implies I = \left[\frac{\pi}{4}\right]$ .  
(ii)  $\sin(\frac{\pi}{4} - x) = \frac{1}{\sqrt{2}}(\cos x - \sin x), \ \cos(\frac{\pi}{4} - x) = \frac{1}{\sqrt{2}}(\cos x + \sin x)$ .  
Hence, the result gives  $\int_{0}^{\frac{1}{4}\pi} \frac{\sin x}{\cos x + \sin x} dx = \frac{1}{2} \int_{0}^{\frac{1}{4}\pi} (1 - \tan x) dx = \frac{1}{2} [x + \ln \cos x]_{0}^{\frac{1}{4}\pi} = \left[\frac{\pi}{8} - \frac{\ln 2}{4}\right]$ .  
(iii) Using the values from (ii) with the result, and calling the integral *I* gives  $I = \int_{0}^{\frac{\pi}{4}} \ln 2 dx - I \implies 2I = \frac{\pi}{4} \ln 2 \implies I = \left[\frac{\pi}{8} \ln 2\right]$ .  
(iv) Using the result changes the integral to  $\frac{\pi}{8} \int_{0}^{\frac{\pi}{4}} \frac{\sec^{2} x}{(1 + \tan x)} dx = \frac{\pi}{8} [\ln(1 + \tan x)]_{0}^{\frac{1}{4}\pi} = \left[\frac{\pi}{8} \ln 2\right]$ .

8 Evaluate the integral

$$\int_{m-\frac{1}{2}}^{\infty} \frac{1}{x^2} \mathrm{d}x \qquad (m > \frac{1}{2})$$

Show by means of a sketch that

$$\sum_{r=m}^{n} \frac{1}{r^2} \approx \int_{m-\frac{1}{2}}^{n+\frac{1}{2}} \frac{1}{x^2} \mathrm{d}x,\tag{*}$$

where m and n are positive integers with m < n.

(i) You are given that the infinite series  $\sum_{r=1}^{\infty} \frac{1}{r^2}$  converges to a value denoted by *E*. Use (\*) to obtain the following approximations for *E*:

$$E \approx 2;$$
  $E \approx \frac{5}{3};$   $E \approx \frac{33}{20}.$ 

(ii) Show that, when r is large, the error in approximating  $\frac{1}{r^2}$  by  $\int_{r-\frac{1}{2}}^{r+\frac{1}{2}} \frac{1}{x^2} dx$  is approximately  $\frac{1}{4r^4}$ .

Given that 
$$E \approx 1.645$$
, show that  $\sum_{r=1}^{\infty} \frac{1}{r^4} \approx 1.08$ 

Solution by Mathemagicien.

- **9** A small bullet of mass m is fired into a block of wood of mass M which is at rest. The speed of the bullet on entering the block is u. Its trajectory within the block is a horizontal straight line and the resistance to the bullet's motion is R, which is constant.
  - (i) The block is fixed. The bullet travels a distance a inside the block before coming to rest. Find an expression for a in terms of m, u, and R.
  - (ii) Instead, the block is free to move on a smooth horizontal table. The bullet travels a distance b inside the block before coming to rest relative to the block, at which time the block has moved a distance c on the table. Find expressions for b and c in terms of M, m, and a.

Y'all have some nice energy arguments, but here's my suvat (it's basically the same).

(i) 
$$S = a, U = u, V = 0, A = -\frac{R}{m}, S = \frac{V^2 - U^2}{2A} \implies a = \frac{mu^2}{2R}$$

Now, I think the question is extremely ambiguous as to whether b is relative to the block or the table, so I will denote the two possibilities  $b_b$  and  $b_t$ , respectively.

(ii) If v is the common speed of the two once the bullet comes to rest relative to the block, then by Conservation of Linear Momentum,  $mu = (M+m)v \implies v = \frac{mu}{M+m}$ .

$$S = b_t, \ U = u, \ V = \frac{mu}{M+m}, \ A = -\frac{R}{m}, \ S = \frac{V^2 - U^2}{2A} \implies b_t = \frac{Mm(M+2m)u^2}{2R(M+m)^2} = \frac{M(M+2m)}{(M+m)^2}a$$

$$S = c, \ U = 0, \ V = \frac{mu}{M+m}, \ A = \frac{R}{M}, \ S = \frac{V^2 - U^2}{2A} \implies c = \frac{Mm^2u^2}{2(M+m)^2R} = \frac{Mm}{(M+m)^2}a$$

$$b_b = b_t - c = \frac{M}{M+m}a$$

$$\implies b_t = \frac{M(M+2m)}{(M+m)^2}a, \qquad b_b = \frac{M}{M+m}a, \qquad c = \frac{Mm}{(M+m)^2}a.$$

A thin uniform wire is bent into the shape of an isosceles triangle ABC, where AB and AC are of 10 equal length at the angle at A is  $2\theta$ . The triangle ABC hangs on a small rough horizontal peg with the side BC resting on the peg. The coefficient of friction between the wire and the peg is  $\mu$ . The plane containing ABC is vertical. Show that the triangle can rest in equilibrium with the peg in contact with any point on BC provided

 $\mu \ge 2 \tan \theta (1 + \sin \theta).$ 

Solution by EwanClementson.



Resolving parallel and perpendicular to BC:  $R = mq \sin \alpha$ ,  $F = mq \cos \alpha$ .  $\mu R \geqslant F \implies \mu mg \sin \alpha \geqslant mg \cos \alpha \implies \mu \geqslant \cot \alpha.$  $\alpha$  is acute and we want the smallest value of  $\tan \alpha$  for our limiting value.  $\tan \alpha = \frac{\bar{x}}{y}$ , so the limiting case is when y is as large as possible, so the peg is effectively at B. In this case,  $y = a \sin \theta$ , where a = |AB|.  $\bar{x}$  is the perpendicular distance from BC to the centre of mass.  $\frac{1}{2}a\cos\theta(2a)\rho = (2a + 2a\sin\theta)\rho\bar{x} \implies \bar{x} = \frac{a\cos\theta}{2(1+\sin\theta)}.$  $\tan\alpha = \frac{a\cos\theta}{2(1+\sin\theta)} \div a\sin\theta = \frac{1}{2\tan\theta(1+\sin\theta)} \implies \cot\alpha = 2\tan\theta(1+\sin\theta).$ 

 $\mu \geqslant \cot \alpha \geqslant 2 \tan \theta (1 + \sin \theta) \implies \mu \geqslant 2 \tan \theta (1 + \sin \theta)$ 

(i) Two particles move on a smooth horizontal surface. The positions, in Cartesian coordinates, of 11 the particles at time t are  $(a + ut \cos \alpha, ut \sin \alpha)$  and  $(vt \cos \beta, b + vt \sin \beta)$ , where a, b, u, and v are positive constants, alpha and  $\beta$  are constant acute angles, and  $t \ge 0$ .

Given that the two particles collide, show that

$$u\sin(\theta + \alpha) = v\sin(\theta + \beta),$$

where  $\theta$  is the acute angle satisfying  $\tan \theta = \frac{b}{a}$ .

(ii) A gun is placed on the top of a vertical tower of height b which stands on horizontal ground. The gun fires a bullet with speed v and (acute) angle of elevation  $\beta$ . Simultaneously, a target is projected from a point on the ground a horizontal distance a from the foot of the tower. The target is projected with speed u and (acute) angle of elevation  $\alpha$ , in a direction directly away from the tower.

Given that the target is hit before it reaches the ground, show that

$$2u\sin\alpha(u\sin\alpha - v\sin\beta) > bg$$

Explain, with reference to part (i), why the target can only be hit if  $\alpha > \beta$ .

Solution by Farhan. Hanif93.

(i) Equating the two pairs of components and arranging for t gives  

$$t = \frac{a}{v\cos\beta - u\cos\alpha} = \frac{b}{u\sin\alpha - v\sin\beta} \implies u(a\sin\alpha + b\cos\alpha) = v(a\sin\beta + b\cos\beta)$$

$$\implies \boxed{u\sin(\theta + \alpha) = v\sin(\theta + \beta)}$$

(ii) At time t, the bullet and target have coordinates  $(vt\cos\beta, b+vt\sin\beta-\frac{1}{2}gt^2)$  and  $(a+ut\cos\alpha, ut\sin\alpha-\frac{1}{2}gt^2)$ , respectively. Let T denote the time of collision, and  $T_0$  denote the time at which the target reaches the ground.

Then 
$$uT \sin \alpha - \frac{1}{2}gT^2 = b + vT \sin \beta - \frac{1}{2}gT^2 \implies T = \frac{b}{u \sin \alpha - v \sin \beta}$$
,  
and  $uT_0 \sin \alpha - \frac{1}{2}gT_0^2 = 0, T_0 \neq 0 \implies T_0 = \frac{2u \sin \alpha}{g}$ .  
They collide before the target reaches the ground, so  $T_0 > T \implies 2u \sin \alpha (u \sin \alpha - v \sin \beta) > bg$ 

The coordinates of the bullet and target are equivalent to those of the two particles in part (i), as equating the y components cancels out the  $-\frac{1}{2}gt^2$  term that distinguishes them. As 2,  $u, \sin \alpha, b, g > 0$ ,  $2u \sin \alpha (u \sin \alpha - v \sin \beta) > bg \implies u \sin \alpha > v \sin \beta$ .

As per (i),  $u(a\sin\alpha + b\cos\alpha) = v(a\sin\beta + b\cos\beta) \implies a(u\sin\alpha - v\sin\beta) = b(v\cos\beta - u\cos\alpha)$  $\begin{array}{l} \Longrightarrow \ v\cos\beta > u\cos\alpha \ \text{as} \ a, b > 0. \\ \Longrightarrow \ \frac{v\cos\beta}{u\cos\alpha} > 1 > \frac{v\sin\beta}{u\sin\alpha} \implies \tan\alpha > \tan\beta \implies \boxed{\alpha > \beta}, \text{ as } \alpha, \beta \text{ are acute.} \end{array}$ 

12 Starting with the result  $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ , prove that

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(B \cap C) - P(C \cap A) + P(A \cap B \cap C).$$

Write down, without proof, the corresponding result for four events A, B, C, and D.

A pack of n cards, numbered 1, 2, ..., n, is shuffled and laid out in a row. The result of the shuffle is that each card is equally likely to be in any position in the row. Let  $E_i$  be the event that the card bearing the number i is in the *i*th position in the row. Write down the following probabilities:

(i)  $P(E_i);$ 

- (ii)  $P(E_i \cap E_j)$ , where  $i \neq j$ ;
- (iii)  $P(E_i \cap E_j \cap E_k)$ , where  $i \neq j, j \neq k$  and  $k \neq i$ .

Hence show that the probability that at least one card is in the same position as the number it bears is

$$1 - \frac{1}{2!} + \frac{1}{3!} - \dots + (-1)^{n+1} \frac{1}{n!}.$$

Find the probability that exactly one card is in the same position as the number it bears.

Solution by EwanClementson.

 $P(A \cup B \cup C) = P((A \cup B) \cup C) = P(A \cup B) + P(C) - P((A \cup B) \cap C).$  $P((A \cup B) \cap C) = P((A \cap B) \cup (A \cap C)) = P(A \cap B) + P(A \cap C) - P(A \cap B \cap C).$  $\implies P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(B \cap C) - P(C \cap A) + P(A \cap B \cap C)$  $P(A \cup B \cup C \cup D) =$  $P(A) + P(B) + P(C) + P(B) - P(A \cap B) - P(A \cap C) - P(A \cap D) - P(B \cap C) - P(B \cap D) - P(C \cap D)$  $+ P(A \cap B \cap C) + P(A \cap B \cap D) + P(A \cap C \cap D) + P(B \cap C \cap D) - P(A \cap B \cap C \cap D)$ (i)  $P(E_i) = \boxed{\frac{1}{n}}$  (ii)  $P(E_i \cap E_j) = \boxed{\frac{1}{n(n-1)}}$  (iii)  $P(E_i \cap E_j \cap E_k) = \boxed{\frac{1}{n(n-1)(n-2)}}$ There are  $\binom{n}{r}$  ways for r of the n cards to be correct, with probability  $\frac{(n-r)!}{n!}$ . P(at least one card is in the same position as the number it bears) = P(E\_1 \cup E\_2 \cup \dots \cup E\_n) =  $\binom{n}{1} \frac{1}{n} - \binom{n}{2} \frac{1}{n(n-1)} + \binom{n}{3} \frac{1}{n(n-1)(n-2)} - \dots + (-1)^{n+1} \binom{n}{n} \frac{1}{n(n-1)(n-2)\dots 1}$ =  $\frac{n!(n-1)!}{1!(n-1)!n!} - \frac{n!(n-2)!}{2!(n-2)!n!} + \frac{n!(n-3)!}{3!(n-3)!n!} - \dots + (-1)^{n+1} \frac{n!(n-n)!}{n!(n-n)!n!}$  $=1-\frac{1}{2!}+\frac{1}{3!}-\cdots+(-1)^{n+1}\frac{1}{n!}$ , as required. P(Exactly one correct) = n P(One chosen correct, all others wrong). $P(1 \text{ chosen correct}) = \frac{1}{n}$ 1 1 1 1

$$\begin{split} & P((n-1) \text{ all wrong}) = 1 - P(At \text{ least one right out of } (n-1)) = \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \dots + (-1)^n \frac{1}{(n-1)!} \\ \implies P(\text{Exactly one correct}) = n \times \frac{1}{n} \times \left(\frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \dots + (-1)^n \frac{1}{(n-1)!}\right) \\ \implies \boxed{P(\text{Exactly one correct}) = \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \dots + (-1)^n \frac{1}{(n-1)!}} \end{split}$$

13 (i) The random variable X has a binomial distribution with parameters n and p, where n = 16 and  $p = \frac{1}{2}$ . Show, using an approximation in terms of the standard normal density function  $\frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}$ , that

$$\mathcal{P}(X=8) \approx \frac{1}{2\sqrt{2\pi}}$$

(ii) By considering a binomial distribution with parameters 2n and  $\frac{1}{2}$ , show that

$$(2n)! \approx \frac{2^{2n}(n!)^2}{\sqrt{n\pi}}.$$

(iii) By considering a Poisson distribution with parameter n, show that

$$n! \approx \sqrt{2\pi n} e^{-n} n^n.$$

Solution by Mathemagicien.

$$\begin{array}{ll} \text{(i)} & X \sim \mathrm{B}(16, \frac{1}{2}) \approx Y \sim \mathrm{N}(8, 2^2). \\ \implies \mathrm{P}(X = 8) \approx \mathrm{P}(7.5 < Y < 8.5) = \mathrm{P}(7.5 < 2Z + 8 < 8.5) = \mathrm{P}(-0.25 < Z < 0.25) \\ = \int_{-\frac{1}{4}}^{\frac{1}{4}} \frac{1}{\sqrt{2\pi}} \mathrm{e}^{-\frac{1}{2}x^2} \, \mathrm{d}x \approx \int_{-\frac{1}{4}}^{\frac{1}{4}} \frac{1}{\sqrt{2\pi}} \mathrm{d}x = \frac{2}{4} \frac{1}{\sqrt{2\pi}} = \frac{1}{2\sqrt{2\pi}} \implies \mathrm{P}(X = 8) \approx \frac{1}{2\sqrt{2\pi}}. \\ \text{(ii)} & \mathrm{Let} \; A \sim \mathrm{B}(2n, \frac{1}{2}) \approx \mathrm{N}(n, \frac{n}{2}) \implies \mathrm{P}(A = n) \approx \mathrm{P}(n - \frac{1}{2} < \sqrt{\frac{n}{2}}Z + n < n + \frac{1}{2}). \\ \implies \begin{pmatrix} 2n \\ n \end{pmatrix} \left(\frac{1}{2}\right)^{2n} \approx \mathrm{P}\left(-\frac{1}{\sqrt{2n}} < Z < \frac{1}{\sqrt{2n}}\right) = \int_{-\frac{1}{\sqrt{2n}}}^{\frac{1}{\sqrt{2\pi}}} \frac{1}{\sqrt{2\pi}} \, \mathrm{e}^{-\frac{1}{2}x^2} \, \mathrm{d}x \approx \frac{2}{\sqrt{2n\sqrt{2\pi}}}. \\ \implies \boxed{(2n)! \approx \frac{2^{2n}(n!)^2}{\sqrt{n\pi}}}. \\ \text{(iii)} & \mathrm{Let} \; E \sim \mathrm{Po}(n) \approx \mathrm{N}(n, n) \implies \mathrm{P}(E = n) = \frac{\mathrm{e}^{-n} n^n}{n!} \approx \mathrm{P}(n - \frac{1}{2} < \sqrt{n}Z + n < n + \frac{1}{2}) \\ \implies \frac{\mathrm{e}^{-n} n^n}{n!} \approx \int_{-\frac{1}{2\sqrt{\pi}}}^{\frac{1}{2\sqrt{\pi}}} \frac{1}{\sqrt{2\pi}} \, \mathrm{e}^{-\frac{1}{2}x^2} \, \mathrm{d}x \approx \frac{2}{2\sqrt{n}\sqrt{2\pi}} \implies \boxed{n! \approx \sqrt{2\pi n} \, \mathrm{e}^{-n} n^n}. \end{array}$$