STEP II 2016 Solutions

Harry Farnworth

June 21, 2016

1 The curve C_{1} has parametric equations $x=t^{2}, y=t^{3}$, where $-\infty<t<\infty$. Let O denote the point $(0,0)$. The points P and Q on C_{1} are such that $\angle P O Q$ is a right angle. Show that the tangents to C_{1} at P and Q intersect on the curve C_{2} with equation $4 y^{2}=3 x-1$.
Determine whether C_{1} and C_{2} meet, and sketch the two curves on the same axes.

Solution by riquix.

Let $t=p$ at P and $t=q$ at Q. Then P is $\left(p^{2}, p^{3}\right)$ and Q is $\left(q^{2}, q^{3}\right)$.
Then line $O P$ has gradient $\frac{p^{3}-0}{p^{2}-0}=p$, and line $O Q$ has gradient q.
$\angle P O Q$ is a right angle $\Longleftrightarrow O P$ is perpendicular to $O Q \Longleftrightarrow p q=-1 \Longleftrightarrow q=-\frac{1}{p}$.
The gradient of C_{1} at the point with parameter t is $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} \div \frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{3 t^{2}}{2 t}=\frac{3}{2} t$.
So the tangent to C_{1} at P has equation $y=\frac{3}{2} p\left(x-p^{2}\right)+p^{3}$,
and the tangent at Q has equation $y=\frac{3}{2} q\left(x-q^{2}\right)+q^{3}=-\frac{3}{2 p}\left(x-\frac{1}{p^{2}}\right)-\frac{1}{p^{3}}$.
\Longrightarrow At the point of intersection between the tangents, $\frac{3}{2} p\left(x-p^{2}\right)+p^{3}=-\frac{3}{2 p}\left(x-\frac{1}{p^{2}}\right)-\frac{1}{p^{3}}$,
which gives $x=\frac{p^{6}+1}{3 p^{2}\left(p^{2}+1\right)}$.
Substituting this into either tangent equation gives $y=\frac{1-p^{2}}{2 p}$.
These give $3 x-1=\frac{p^{6}-p^{4}-p^{2}+1}{p^{2}\left(p^{2}+1\right)}$ and $4 y^{2}=\frac{p^{4}-2 p^{2}+p^{4}}{p^{2}}=\frac{p^{6}-p^{4}-p^{2}+1}{p^{2}\left(p^{2}+1\right)}$,
so $4 y^{2}=3 x-1$ at the point of intersection of the two tangents, meaning it lies on the curve C_{2}.

For the two curves to meet, $4\left(t^{3}\right)^{2}=3\left(t^{2}\right)-1 \Longleftrightarrow 4 t^{6}-3 t^{2}+1=0 \Longleftrightarrow\left(t^{2}+1\right)\left(4 t^{4}-4 t^{2}+1\right)=0$ $\Longleftrightarrow\left(2 t^{2}-1\right)^{2}=0 \Longleftrightarrow t= \pm \frac{1}{\sqrt{2}}$.
Hence the two curves do meet, at the points $\left(\frac{1}{2}, \pm \frac{1}{2 \sqrt{2}}\right)$.

2 Use the factor theorem to show that $a+b-c$ is a factor of

$$
\begin{equation*}
(a+b+c)^{3}-6(a+b+c)\left(a^{2}+b^{2}+c^{2}\right)+8\left(a^{3}+b^{3}+c^{3}\right) \tag{*}
\end{equation*}
$$

Hence factorise ($*$) completely.
(i) Use the result above to solve the equation

$$
(x+1)^{3}-3(x+1)\left(2 x^{2}+5\right)+2\left(4 x^{3}+13\right)=0
$$

(ii) By setting $d+e=c$, or otherwise, show that $(a+b-d-e)$ is a factor of

$$
(a+b+d+e)^{3}-6(a+b+d+e)\left(a^{2}+b^{2}+d^{2}+e^{2}\right)+8\left(a^{3}+b^{3}+d^{3}+e^{3}\right)
$$

and factorise this expression completely.
Hence solve the equation

$$
(x+6)^{3}-6(x+6)\left(x^{2}+14\right)+8\left(x^{3}+36\right)=0
$$

Solution by Hauss.

Let $\mathrm{f}(a, b, c)=(a+b+c)^{3}-6(a+b+c)\left(a^{2}+b^{2}+c^{2}\right)+8\left(a^{3}+b^{3}+c^{3}\right)$.
$\mathrm{f}(a, b, a+b)=0$, as shown by some algebraic manipulation after substituting in $a+b$ for c.
$\Longrightarrow(a+b-c)$ is a factor of $f(a, b, c)$.
$\mathrm{f}(a, b, c)$ is symmetric in a, b, c, so $(a-b+c)$ and $(a-b-c)$ are also factors.
By consideration of the term with the highest power of a, or by wasting lots of time on algebra, we see that $\mathrm{f}(a, b, c)=3(a+b-c)(a-b+c)(a-b-c)$.
(i) $\quad(x+1)^{3}-3(x+1)\left(2 x^{2}+5\right)+2\left(4 x^{3}+13\right)=(x+1)^{3}-6(x+1)\left(x^{2}+\frac{5}{2}\right)+8\left(x^{3}+\frac{13}{4}\right)$
$=\mathrm{f}\left(x, \frac{3}{2},-\frac{1}{2}\right)=3(x-2)(x-1)(x+2)=0 \Longrightarrow x=1, x=2, x=-2$.
(ii) Let $\mathrm{g}(a, b, d, e)=(a+b+d+e)^{3}-6(a+b+d+e)\left(a^{2}+b^{2}+d^{2}+e^{2}\right)+8\left(a^{3}+b^{3}+d^{3}+e^{3}\right)$

Using $d+e=c$ gives $\mathrm{g}(a, b, d, e)=\mathrm{f}(a, b, c)+12(a+b+c) d e-24 c d e$
$\mathrm{f}(a, b, c)$ has a factor $(a+b-c)=(a+b-d-e)$, and when $a+b=c, 12(a+b+c) d e-24 c d e=0$
$\Longrightarrow 12(a+b+c) d e-24 c d e$ has a factor $(a+b-c)=(a+b-d-e) \Longrightarrow \mathrm{g}(a, b, d, e)$ has a factor $(a+$ $b-d-e)$.
As $\mathrm{g}(a, b, d, e)$ is symmetric in a, b, d, and $e, \mathrm{~g}(a, b, d, e)$ has factors $(a-b+d-e)$ and $(a-b-d+e)$.
By consideration of the term with the highest power of a, or by wasting lots more time on algebra, we see that $\mathrm{g}(a, b, d, e)=3(a+b-d-e)(a-b+d-e)(a-b-d+e)$.
Finally, $g(x, 1,2,3)=(x+6)^{3}-6(x+6)\left(x^{2}+14\right)+8\left(x^{3}+36\right)=3 x(x-2)(x-4) \Longrightarrow x=0, x=2, x=4$.

3 For each non-negative integer n, the polynomial f_{n} is defined by

$$
\mathrm{f}_{n}(x)=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots+\frac{x^{n}}{n!} .
$$

(i) Show that $\mathrm{f}_{n}^{\prime}(x)=\mathrm{f}_{n-1}(x)($ for $n \geqslant 1)$.
(ii) Show that, if a is a real root of the equation

$$
\begin{equation*}
\mathrm{f}_{n}(x)=0 \tag{*}
\end{equation*}
$$

then $a<0$.
(iii) Let a and b be distinct real roots of $(*)$, for $n \geqslant 2$. Show that $\mathrm{f}_{n}^{\prime}(a) \mathrm{f}_{n}^{\prime}(b)>0$ and use a sketch to deduce that $f_{n}(c)=0$ for some number c between a and b.

Deduce that $(*)$ has at most one real root. How many real roots does $(*)$ have if n is odd? How many real roots does $(*)$ have if n is even?

Solution by StrangeBanana.

(i) $\mathrm{f}_{n}(x)=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots+\frac{x^{n}}{n!}$
$\Longrightarrow \mathrm{f}_{n}^{\prime}(x)=0+1+\frac{2 x}{2!}+\frac{3 x^{2}}{3!}+\cdots+\frac{n x^{n-1}}{n!}=1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{n-1}}{(n-1)!}=\mathrm{f}_{n-1}(x)$
(ii) If $\mathrm{f}_{n}(a)=0$ for some $a \geqslant 0$, then $1+a+\frac{a^{2}}{2!}+\frac{a^{3}}{3!}+\cdots+\frac{a^{n}}{n!}=0$, but the LHS is a sum of non-negative terms (including at least one positive term), and hence greater than 0.
This is therefore a contradiction, so any root a must satisfy $a<0$.
(iii) With two roots a and b, taking $a<b$, we have $\mathrm{f}_{n}^{\prime}(a)=\mathrm{f}_{n-1}(a)=\mathrm{f}_{n}(a)-\frac{a^{n}}{n!}=-\frac{a^{n}}{n!}$, and similarly, $\mathrm{f}_{n}^{\prime}(b)=-\frac{b^{n}}{n!}$, so $\mathrm{f}_{n}^{\prime}(a) \mathrm{f}_{n}^{\prime}(b)=\frac{(a b)^{n}}{(n!)^{2}}$.
By part (ii), we have $a, b<0$ so $a b>0 \Longrightarrow(a b)^{n}>0 \Longrightarrow \mathrm{f}_{n}^{\prime}(a) \mathrm{f}_{n}^{\prime}(b)>0$, as required.
This means that $\mathrm{f}_{n}^{\prime}(a)$ and $\mathrm{f}_{n}^{\prime}(b)$ have the same sign.

Clearly, if the gradient is positive (or negative) at both roots, the curve must intersect the x axis somewhere between the two to maintain continuity. But this means that between any two roots of $\mathrm{f}_{n}(x)=0$ is another distinct root, so we can find infinitely many roots.
As f_{n} is an n-degree polynomial, it can only have up to n real roots, so assuming that we have two distinct roots causes a contradiction. Hence, $\mathrm{f}_{n}(x)=0$ has at most 1 real root.
This root cannot be repeated, as for any root $x \neq 0\left(\right.$ as $\left.\mathrm{f}_{n}(0) \equiv 1\right), \mathrm{f}_{n}^{\prime}(x)=-\frac{x^{n}}{n!} \neq 0$. To have real coefficients, the function must have an even number of non-real roots, so odd $n \Longrightarrow 1$ real root, and even $n \Longrightarrow 0$ real roots.

$$
y=\frac{x^{2}+x \sin \theta+1}{x^{2}+x \cos \theta+1} .
$$

(i) Given that x is real, show that

$$
(y \cos \theta-\sin \theta)^{2} \geqslant 4(y-1)^{2} .
$$

Deduce that

$$
y^{2}+1 \geqslant 4(y-1)^{2}
$$

and hence that

$$
\frac{4-\sqrt{7}}{3} \leqslant y \leqslant \frac{4+\sqrt{7}}{3}
$$

(ii) In the case $y=\frac{4+\sqrt{7}}{3}$, show that

$$
\sqrt{y^{2}+1}=2(y-1)
$$

and find the corresponding values of x and $\tan \theta$.

Solution by StrangeBanana.

(i) Rearrange the equation for y to a quadratic in x :
$(y-1) x^{2}+(y \cos \theta-\sin \theta) x+(y-1)=0$
As x is real, the discriminant of this must be non-negative.
$\Longrightarrow(y \cos \theta-\sin \theta)^{2}-4(y-1)^{2} \geqslant 0 \Longrightarrow(y \cos \theta-\sin \theta)^{2} \geqslant 4(y-1)^{2}$, as required.
Consider $y^{2}+1-(y \cos \theta-\sin \theta)^{2}=y^{2}\left(1-\cos ^{2} \theta\right)+2 y \cos \theta \sin \theta+1-\sin ^{2} \theta$
$=(y \sin \theta)^{2}+2 y \sin \theta \cos \theta+\cos ^{2} \theta=(y \sin \theta+\cos \theta)^{2} \geqslant 0$
$\Longrightarrow y^{2}+1 \geqslant(y \cos \theta-\sin \theta)^{2} \geqslant 4(y-1)^{2} \Longrightarrow y^{2}+1 \geqslant 4(y-1)^{2}$, as required.
$\Longrightarrow 3 y^{2}-8 y+3 \leqslant 0 \Longrightarrow\left(y-\frac{4-\sqrt{7}}{3}\right)\left(y-\frac{4+\sqrt{7}}{3}\right) \leqslant 0 \Longrightarrow \frac{4-\sqrt{7}}{3} \leqslant y \leqslant \frac{4+\sqrt{7}}{3}$.
(ii) This y value is a solution to $3 y^{2}-8 y+3=0$ from part (i).
$\Longrightarrow y^{2}+1=4(y-1)^{2} \Longrightarrow \sqrt{y^{2}+1}=2(y-1) \quad\left(\right.$ noting that $\left.y-1=\frac{1+\sqrt{7}}{3}>0\right)$.
Given that $y^{2}+1 \geqslant(y \cos \theta-\sin \theta)^{2} \geqslant 4(y-1)^{2}$ and $y^{2}+1=4(y-1)^{2}$,
$y^{2}+1=(y \cos \theta-\sin \theta)^{2} \Longrightarrow y^{2}+1-(y \cos \theta-\sin \theta)^{2}=(y \sin \theta+\cos \theta)^{2}=0 \Longrightarrow y=-\cot \theta$
$\Longrightarrow \tan \theta=-\frac{1}{y}=\frac{-3}{4+\sqrt{7}}=\frac{\sqrt{7}-4}{3} \Longrightarrow \tan \theta=\frac{\sqrt{7}-4}{3}$.
And because the discriminant of the original quadratic in x is now 0 ,
$x=\frac{-b}{2 a}=\frac{\sin \theta-y \cos \theta}{2(y-1)}= \pm \sqrt{\frac{(\sin \theta-y \cos \theta)^{2}}{4(y-1)^{2}}}= \pm \sqrt{1}= \pm 1 \Longrightarrow x= \pm 1$.

5 In this question, the definition of $\binom{p}{q}$ is taken to be

$$
\binom{p}{q}= \begin{cases}\frac{p!}{q!(p-q)!} & \text { if } p \geqslant q \geqslant 0 \\ 0 & \text { otherwise }\end{cases}
$$

(i) Write down the coefficient of x^{n} in the binomial expansion for $(1-x)^{-N}$, where N is a positive integer, and write down the expansion using the Σ summation notation.

By considering $(1-x)^{-1}(1-x)^{-N}$, where N is a positive integer, show that

$$
\sum_{j=0}^{n}\binom{N+j-1}{j}=\binom{N+n}{n}
$$

(ii) Show that, for any positive integers m, n, and r with $r \leqslant m+n$,

$$
\binom{m+n}{r}=\sum_{j=0}^{r}\binom{m}{j}\binom{n}{r-j}
$$

(iii) Show that, for any positive integers m and N,

$$
\sum_{j=0}^{n}(-1)^{j}\binom{N+m}{n-j}\binom{m+j-1}{j}=\binom{N}{n}
$$

Solution by Hauss.
(i) Coefficient of x^{n} in the expansion of $(1-x)^{-N}$ is $\binom{N+n-1}{n}$.
$\Longrightarrow(1-x)^{-N}=\sum_{j=0}^{\infty}\binom{N+j-1}{j} x^{j}$.
Coefficient of x^{n-j} in the expansion of $(1-x)^{-1}$ is 1 .
Coefficient of x^{j} in the expansion of $(1-x)^{-N}$ is $\binom{N+j-1}{j}$.
Coefficient of x^{n} in the expansion of $(1-x)^{-N-1}$ is $\binom{N+n}{n}$.
$\Longrightarrow \sum_{j=0}^{n}(0)\binom{N+j-1}{j}=\binom{N+n}{n}$, as required.
(ii) Coefficient of x^{r-j} in the expansion of $(1+x)^{n}$ is $\binom{n}{r-j}$.

Coefficient of x^{j} in the expansion of $(1+x)^{m}$ is $\binom{m}{j}$.
Coefficient of x^{r} in the expansion of $(1+x)^{m+n}$ is $\binom{m+n}{r}$.
$\Longrightarrow \sum_{j=0}^{r}\binom{m}{j}\binom{n}{r-j}=\binom{m+n}{r}$, as required.
(iii) Coefficient of x^{j} in the expansion of $(1+x)^{-m}$ is $(-1)^{j}\binom{m+j-1}{j}$.

Coefficient of x^{n-j} in the expansion of $(1+x)^{m+N}$ is $\binom{N+m}{n-j}$.
Coefficient of x^{n} in the expansion of $(1+x)^{N}$ is $\binom{N}{n}$.
$\Longrightarrow \sum_{j=0}^{n}(-1)^{j}\binom{N+m}{n-j}\binom{m+j-1}{j}=\binom{N}{n}$, as required.

6 This question concerns solutions of the differential equation

$$
\begin{equation*}
\left(1-x^{2}\right)\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}+k^{2} y^{2}=k^{2} \tag{*}
\end{equation*}
$$

where k is a positive integer.
For each value of k, let $y_{k}(x)$ be the solution of $(*)$ that satisfies $y_{k}(1)=1$; you may assume that there is only one such solution for each value of k.
(i) Write down the differential equation satisfied by $y_{1}(x)$ and verify that $y_{1}(x)=x$.
(ii) Write down the differential equation satisfied by $y_{2}(x)$ and verify that $y_{2}(x)=2 x^{2}-1$.
(iii) Let $z(x)=2\left(y_{n}(x)\right)^{2}-1$. Show that

$$
\left(1-x^{2}\right)\left(\frac{\mathrm{d} z}{\mathrm{~d} x}\right)^{2}+4 n^{2} z^{2}=4 n^{2}
$$

and hence obtain an expression for $y_{2 n}(x)$ in terms of $y_{n}(x)$.
(iv) Let $v(x)=y_{n}\left(y_{m}(x)\right)$. Show that $v(x)=y_{m n}(x)$.

Solution by Mathemagicien.

(i) $\left(1-x^{2}\right)\left(\frac{\mathrm{d} y_{1}}{\mathrm{~d} x}\right)^{2}+y_{1}^{2}=1$

If $y_{1}(x)=x, y_{1}(1)=1$, and $\left(1-x^{2}\right)\left(\frac{\mathrm{d} y_{1}}{\mathrm{~d} x}\right)^{2}+y_{1}^{2}=1-x^{2}+x^{2}=1$
$\Longrightarrow y_{1}(x)=x$ is a solution $\Longrightarrow y_{1}(x)=x$ is the solution.
(ii) $\left(1-x^{2}\right)\left(\frac{\mathrm{d} y_{2}}{\mathrm{~d} x}\right)^{2}+4 y_{2}^{2}=4$

If $y_{2}(x)=2 x^{2}-1, y_{2}(1)=1$, and $\left(1-x^{2}\right)\left(\frac{\mathrm{d} y_{2}}{\mathrm{~d} x}\right)^{2}+4 y_{2}^{2}=\left(1-x^{2}\right)\left(16 x^{2}\right)+4\left(4 x^{4}-4 x^{2}+1\right)=4$
$\Longrightarrow y_{2}(x)=2 x^{2}-1$ is a solution $\Longrightarrow y_{2}(x)=2 x^{2}-1$ is the solution.
(iii) $z(x)=2\left(y_{n}(x)\right)^{2}-1 \Longrightarrow z^{2}=4 y_{n}^{4}-4 y_{n}^{2}+1, \quad \frac{\mathrm{~d} z}{\mathrm{~d} x}=4 y_{n} \frac{\mathrm{~d} y_{n}}{\mathrm{~d} x}$.

By (*), $\left(\frac{\mathrm{d} y_{n}}{\mathrm{~d} x}\right)^{2}=\frac{n^{2}\left(1-y_{n}^{2}\right)}{1-x^{2}}$.
$\Longrightarrow\left(1-x^{2}\right)\left(\frac{\mathrm{d} z}{\mathrm{~d} x}\right)^{2}+4 n^{2} z^{2}=16 y_{n}^{2} n^{2}\left(1-y_{n}^{2}\right)+16 n^{2} y_{n}^{4}-16 n^{2} y_{n}^{2}+4 n^{2}=4 n^{2}$, as required.
This is the same as $(*)$ with $k=2 n$. Additionally, $z(1)=2\left(y_{n}(1)\right)^{2}-1=2-1=1$.
Hence, $z(x)=y_{2 n}(x)=2\left(y_{n}(x)\right)^{2}-1$.
(iv) $\quad v(x)=y_{n}\left(y_{m}(x)\right) \Longrightarrow \frac{\mathrm{d} v}{\mathrm{~d} x}=\frac{\mathrm{d} y_{n}\left(y_{m}(x)\right)}{\mathrm{d} y_{m}(x)} \times \frac{\mathrm{d} y_{m}(x)}{\mathrm{d} x}$.

By $(*),\left(\frac{\mathrm{d} y_{m}}{\mathrm{~d} x}\right)^{2}=\frac{m^{2}\left(1-y_{m}^{2}\right)}{1-x^{2}}$, and $\left(\frac{\mathrm{d} y_{n}\left(y_{m}(x)\right)}{\mathrm{d} y_{m}(x)}\right)^{2}=\frac{n^{2}\left(1-\left(y_{n}\left(y_{m}(x)\right)\right)^{2}\right)}{1-\left(y_{m}(x)\right)^{2}}$.
$\Longrightarrow\left(\frac{\mathrm{d} v}{\mathrm{~d} x}\right)^{2}=\frac{n^{2}\left(1-\left(y_{n}\left(y_{m}(x)\right)\right)^{2}\right)}{1-\left(y_{m}(x)\right)^{2}} \times \frac{m^{2}\left(1-\left(y_{m}(x)\right)^{2}\right)}{1-x^{2}}=\frac{(m n)^{2}\left(1-v^{2}\right)}{1-x^{2}}$
$\Longrightarrow(1-x)^{2}\left(\frac{\mathrm{~d} v}{\mathrm{~d} x}\right)^{2}+(m n)^{2} v^{2}=(m n)^{2}$. This is the differential equation satisfied by $y_{m n}(x)$
$\Longrightarrow v(x)=y_{m n}(x)$, as there is only one solution for each k.

7 Show that

$$
\begin{equation*}
\int_{0}^{a} \mathrm{f}(x) \mathrm{d} x=\int_{0}^{a} \mathrm{f}(a-x) \mathrm{d} x \tag{*}
\end{equation*}
$$

where f is any function for which the integrals exist.
(i) Use (*) to evaluate

$$
\int_{0}^{\frac{1}{2} \pi} \frac{\sin x}{\cos x+\sin x} \mathrm{~d} x
$$

(ii) Evaluate

$$
\int_{0}^{\frac{1}{4} \pi} \frac{\sin x}{\cos x+\sin x} \mathrm{~d} x
$$

(iii) Evaluate

$$
\int_{0}^{\frac{1}{4} \pi} \ln (1+\tan x) \mathrm{d} x
$$

(iv) Evaluate

$$
\int_{0}^{\frac{1}{4} \pi} \frac{x}{\cos x(\cos x+\sin x)} \mathrm{d} x
$$

Solution by KingRS.
Substituting $u=a-x$ gives $\int_{0}^{a} \mathrm{f}(x) \mathrm{d} x=-\int_{a}^{0} \mathrm{f}(a-u) \mathrm{d} u=\int_{0}^{a} \mathrm{f}(a-x) \mathrm{d} x$, as required.
(i) Call the integral I. The result gives $I=\int_{0}^{\frac{1}{2} \pi} \frac{\cos x}{\cos x+\sin x} \mathrm{~d} x \Longrightarrow 2 I=\frac{\pi}{2} \Longrightarrow I=\frac{\pi}{4}$.
(ii) $\quad \sin \left(\frac{\pi}{4}-x\right)=\frac{1}{\sqrt{2}}(\cos x-\sin x), \cos \left(\frac{\pi}{4}-x\right)=\frac{1}{\sqrt{2}}(\cos x+\sin x)$.

Hence, the result gives $\int_{0}^{\frac{1}{4} \pi} \frac{\sin x}{\cos x+\sin x} \mathrm{~d} x=\frac{1}{2} \int_{0}^{\frac{1}{4} \pi}(1-\tan x) \mathrm{d} x=\frac{1}{2}[x+\ln \cos x]_{0}^{\frac{1}{4} \pi}=\frac{\pi}{8}-\frac{\ln 2}{4}$.
(iii) Using the values from (ii) with the result, and calling the integral I gives
$I=\int_{0}^{\frac{\pi}{4}} \ln 2 \mathrm{~d} x-I \Longrightarrow 2 I=\frac{\pi}{4} \ln 2 \Longrightarrow I=\frac{\pi}{8} \ln 2$.
(iv) Using the result changes the integral to
$\frac{\pi}{8} \int_{0}^{\frac{\pi}{4}} \frac{1}{\cos x(\cos x+\sin x)} \mathrm{d} x=\frac{\pi}{8} \int_{0}^{\frac{\pi}{4}} \frac{\sec ^{2} x}{(1+\tan x)} \mathrm{d} x=\frac{\pi}{8}[\ln (1+\tan x)]_{0}^{\frac{1}{4} \pi}=\frac{\pi}{8} \ln 2$.

Evaluate the integral

$$
\int_{m-\frac{1}{2}}^{\infty} \frac{1}{x^{2}} \mathrm{~d} x \quad\left(m>\frac{1}{2}\right)
$$

Show by means of a sketch that

$$
\begin{equation*}
\sum_{r=m}^{n} \frac{1}{r^{2}} \approx \int_{m-\frac{1}{2}}^{n+\frac{1}{2}} \frac{1}{x^{2}} \mathrm{~d} x \tag{*}
\end{equation*}
$$

where m and n are positive integers with $m<n$.
(i) You are given that the infinite series $\sum_{r=1}^{\infty} \frac{1}{r^{2}}$ converges to a value denoted by E. Use (*) to obtain the following approximations for E :

$$
E \approx 2 ; \quad E \approx \frac{5}{3} ; \quad E \approx \frac{33}{20}
$$

(ii) Show that, when r is large, the error in approximating $\frac{1}{r^{2}}$ by $\int_{r-\frac{1}{2}}^{r+\frac{1}{2}} \frac{1}{x^{2}} \mathrm{~d} x$ is approximately $\frac{1}{4 r^{4}}$. Given that $E \approx 1.645$, show that $\sum_{r=1}^{\infty} \frac{1}{r^{4}} \approx 1.08$.

Solution by Mathemagicien.

$\int_{m-\frac{1}{2}}^{\infty} \frac{1}{x^{2}} \mathrm{~d} x=\frac{2}{2 m-1} . \quad$ For this solution, we define $\sum_{i=1}^{0} \mathrm{f}(i)=0$.

Clearly, $\frac{1}{r^{2}} \approx \int_{r-\frac{1}{2}}^{r+\frac{1}{2}} \frac{1}{x^{2}} \mathrm{~d} x$ for $r \geqslant 1 . \Longrightarrow \sum_{r=m}^{n} \frac{1}{r^{2}} \approx \int_{m-\frac{1}{2}}^{n+\frac{1}{2}} \frac{1}{x^{2}} \mathrm{~d} x$ for suitable m and n.
(i) We extend this to $\sum_{r=m}^{\infty} \frac{1}{r^{2}} \approx \int_{m-\frac{1}{2}}^{\infty} \frac{1}{x^{2}} \mathrm{~d} x=\frac{2}{2 m-1}$, as we are given that the LHS exists.
$\Longrightarrow E=\sum_{r=1}^{\infty} \frac{1}{r^{2}} \approx \frac{2}{2 m-1}+\sum_{r=1}^{m-1} \frac{1}{r^{2}} \Longrightarrow E \approx 2+0=2, \frac{2}{3}+1=\frac{5}{3}, \frac{2}{5}+1+\frac{1}{4}=\frac{33}{20}$.
(ii) For large r, $\int_{r-\frac{1}{2}}^{r+\frac{1}{2}} \frac{1}{x^{2}} \mathrm{~d} x-\frac{1}{r^{2}}=\frac{1}{r-\frac{1}{2}}-\frac{1}{r+\frac{1}{2}}-\frac{1}{r^{2}}=\frac{1}{4\left(r^{4}-r^{2}\right)} \approx \frac{1}{4 r^{4}}$.
$\Longrightarrow \sum_{r=m}^{\infty}\left(\frac{1}{r^{2}}+\frac{1}{4 r^{4}}\right) \approx \int_{m-\frac{1}{2}}^{\infty} \frac{1}{x^{2}} \mathrm{~d} x=\frac{2}{2 m-1}$.
$\Longrightarrow \sum_{r=1}^{\infty} \frac{1}{r^{4}} \approx \frac{8}{2 m-1}-4 E+\sum_{r=1}^{m-1}\left(\frac{4}{r^{2}}+\frac{1}{r^{4}}\right)$
Set $m=3 \Longrightarrow \sum_{r=1}^{\infty} \frac{1}{r^{4}} \approx 1.6-6.58+4+1+1+0.0625=1.0825 \approx 1.08$.
$9 \quad$ A small bullet of mass m is fired into a block of wood of mass M which is at rest. The speed of the bullet on entering the block is u. Its trajectory within the block is a horizontal straight line and the resistance to the bullet's motion is R, which is constant.
(i) The block is fixed. The bullet travels a distance a inside the block before coming to rest. Find an expression for a in terms of m, u, and R.
(ii) Instead, the block is free to move on a smooth horizontal table. The bullet travels a distance b inside the block before coming to rest relative to the block, at which time the block has moved a distance c on the table. Find expressions for b and c in terms of M, m, and a.

Y'all have some nice energy arguments, but here's my suvat (it's basically the same).
(i) $S=a, U=u, V=0, A=-\frac{R}{m}, S=\frac{V^{2}-U^{2}}{2 A} \Longrightarrow a=\frac{m u^{2}}{2 R}$

Now, I think the question is extremely ambiguous as to whether b is relative to the block or the table, so I will denote the two possibilities b_{b} and b_{t}, respectively.
(ii) If v is the common speed of the two once the bullet comes to rest relative to the block, then by Conservation of Linear Momentum, $m u=(M+m) v \Longrightarrow v=\frac{m u}{M+m}$.
$S=b_{t}, U=u, V=\frac{m u}{M+m}, A=-\frac{R}{m}, S=\frac{V^{2}-U^{2}}{2 A} \Longrightarrow b_{t}=\frac{M m(M+2 m) u^{2}}{2 R(M+m)^{2}}=\frac{M(M+2 m)}{(M+m)^{2}} a$
$S=c, U=0, V=\frac{m u}{M+m}, A=\frac{R}{M}, S=\frac{V^{2}-U^{2}}{2 A} \Longrightarrow c=\frac{M m^{2} u^{2}}{2(M+m)^{2} R}=\frac{M m}{(M+m)^{2}} a$
$b_{b}=b_{t}-c=\frac{M}{M+m} a$
$\Longrightarrow \quad b_{t}=\frac{M(M+2 m)}{(M+m)^{2}} a, \quad b_{b}=\frac{M}{M+m} a, \quad c=\frac{M m}{(M+m)^{2}} a$.

10 A thin uniform wire is bent into the shape of an isosceles triangle $A B C$, where $A B$ and $A C$ are of equal length at the angle at A is 2θ. The triangle $A B C$ hangs on a small rough horizontal peg with the side $B C$ resting on the peg. The coefficient of friction between the wire and the peg is μ. The plane containing $A B C$ is vertical. Show that the triangle can rest in equilibrium with the peg in contact with any point on $B C$ provided

$$
\mu \geqslant 2 \tan \theta(1+\sin \theta) .
$$

Solution by EwanClementson.

Resolving parallel and perpendicular to $B C: \quad R=m g \sin \alpha, \quad F=m g \cos \alpha$. $\mu R \geqslant F \Longrightarrow \mu m g \sin \alpha \geqslant m g \cos \alpha \Longrightarrow \mu \geqslant \cot \alpha$.
α is acute and we want the smallest value of $\tan \alpha$ for our limiting value.
$\tan \alpha=\frac{\bar{x}}{y}$, so the limiting case is when y is as large as possible, so the peg is effectively at B.
In this case, $y=a \sin \theta$, where $a=|A B|$.
\bar{x} is the perpendicular distance from $B C$ to the centre of mass.
$\frac{1}{2} a \cos \theta(2 a) \rho=(2 a+2 a \sin \theta) \rho \bar{x} \Longrightarrow \bar{x}=\frac{a \cos \theta}{2(1+\sin \theta)}$.
$\tan \alpha=\frac{a \cos \theta}{2(1+\sin \theta)} \div a \sin \theta=\frac{1}{2 \tan \theta(1+\sin \theta)} \Longrightarrow \cot \alpha=2 \tan \theta(1+\sin \theta)$.
$\mu \geqslant \cot \alpha \geqslant 2 \tan \theta(1+\sin \theta) \Longrightarrow \mu \geqslant 2 \tan \theta(1+\sin \theta)$.

11 (i) Two particles move on a smooth horizontal surface. The positions, in Cartesian coordinates, of the particles at time t are $(a+u t \cos \alpha, u t \sin \alpha)$ and $(v t \cos \beta, b+v t \sin \beta)$, where a, b, u, and v are positive constants, alpha and β are constant acute angles, and $t \geqslant 0$.

Given that the two particles collide, show that

$$
u \sin (\theta+\alpha)=v \sin (\theta+\beta)
$$

where θ is the acute angle satisfying $\tan \theta=\frac{b}{a}$.
(ii) A gun is placed on the top of a vertical tower of height b which stands on horizontal ground. The gun fires a bullet with speed v and (acute) angle of elevation β. Simultaneously, a target is projected from a point on the ground a horizontal distance a from the foot of the tower. The target is projected with speed u and (acute) angle of elevation α, in a direction directly away from the tower.

Given that the target is hit before it reaches the ground, show that

$$
2 u \sin \alpha(u \sin \alpha-v \sin \beta)>b g
$$

Explain, with reference to part (i), why the target can only be hit if $\alpha>\beta$.

Solution by Farhan.Hanif93.
(i) Equating the two pairs of components and arranging for t gives
$t=\frac{a}{v \cos \beta-u \cos \alpha}=\frac{b}{u \sin \alpha-v \sin \beta} \Longrightarrow u(a \sin \alpha+b \cos \alpha)=v(a \sin \beta+b \cos \beta)$
$\Longrightarrow u \sin (\theta+\alpha)=v \sin (\theta+\beta)$
(ii) At time t, the bullet and target have coordinates
(vt $\cos \beta, b+v t \sin \beta-\frac{1}{2} g t^{2}$) and ($a+u t \cos \alpha, u t \sin \alpha-\frac{1}{2} g t^{2}$), respectively.
Let T denote the time of collision, and T_{0} denote the time at which the target reaches the ground.
Then $u T \sin \alpha-\frac{1}{2} g T^{2}=b+v T \sin \beta-\frac{1}{2} g T^{2} \Longrightarrow T=\frac{b}{u \sin \alpha-v \sin \beta}$,
and $u T_{0} \sin \alpha-\frac{1}{2} g T_{0}^{2}=0, T_{0} \neq 0 \Longrightarrow T_{0}=\frac{2 u \sin \alpha}{g}$.
They collide before the target reaches the ground, so $T_{0}>T \Longrightarrow 2 u \sin \alpha(u \sin \alpha-v \sin \beta)>b g$.
The coordinates of the bullet and target are equivalent to those of the two particles in part (i), as equating the y components cancels out the $-\frac{1}{2} g t^{2}$ term that distinguishes them.
As $2, u, \sin \alpha, b, g>0,2 u \sin \alpha(u \sin \alpha-v \sin \beta)>b g \Longrightarrow u \sin \alpha>v \sin \beta$.
As per (i), $u(a \sin \alpha+b \cos \alpha)=v(a \sin \beta+b \cos \beta) \Longrightarrow a(u \sin \alpha-v \sin \beta)=b(v \cos \beta-u \cos \alpha)$
$\Longrightarrow v \cos \beta>u \cos \alpha$ as $a, b>0$.
$\Longrightarrow \frac{v \cos \beta}{u \cos \alpha}>1>\frac{v \sin \beta}{u \sin \alpha} \Longrightarrow \tan \alpha>\tan \beta \Longrightarrow \alpha>\beta$, as α, β are acute.

Starting with the result $\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B)$, prove that

$$
\mathrm{P}(A \cup B \cup C)=\mathrm{P}(A)+\mathrm{P}(B)+\mathrm{P}(C)-\mathrm{P}(A \cap B)-\mathrm{P}(B \cap C)-\mathrm{P}(C \cap A)+\mathrm{P}(A \cap B \cap C) .
$$

Write down, without proof, the corresponding result for four events A, B, C, and D.
A pack of n cards, numbered $1,2, \ldots, n$, is shuffled and laid out in a row. The result of the shuffle is that each card is equally likely to be in any position in the row. Let E_{i} be the event that the card bearing the number i is in the i th position in the row. Write down the following probabilities:
(i) $\mathrm{P}\left(E_{i}\right)$;
(ii) $\mathrm{P}\left(E_{i} \cap E_{j}\right)$, where $i \neq j$;
(iii) $\mathrm{P}\left(E_{i} \cap E_{j} \cap E_{k}\right)$, where $i \neq j, j \neq k$ and $k \neq i$.

Hence show that the probability that at least one card is in the same position as the number it bears is

$$
1-\frac{1}{2!}+\frac{1}{3!}-\cdots+(-1)^{n+1} \frac{1}{n!}
$$

Find the probability that exactly one card is in the same position as the number it bears.

Solution by EwanClementson.

$\mathrm{P}(A \cup B \cup C)=\mathrm{P}((A \cup B) \cup C)=\mathrm{P}(A \cup B)+\mathrm{P}(C)-\mathrm{P}((A \cup B) \cap C)$.
$\mathrm{P}((A \cup B) \cap C)=\mathrm{P}((A \cap B) \cup(A \cap C))=\mathrm{P}(A \cap B)+\mathrm{P}(A \cap C)-\mathrm{P}(A \cap B \cap C)$.
$\Longrightarrow \mathrm{P}(A \cup B \cup C)=\mathrm{P}(A)+\mathrm{P}(B)+\mathrm{P}(C)-\mathrm{P}(A \cap B)-\mathrm{P}(B \cap C)-\mathrm{P}(C \cap A)+\mathrm{P}(A \cap B \cap C)$.

$$
\begin{gathered}
\mathrm{P}(A \cup B \cup C \cup D)= \\
\mathrm{P}(A)+\mathrm{P}(B)+\mathrm{P}(C)+\mathrm{P}(B)-\mathrm{P}(A \cap B)-\mathrm{P}(A \cap C)-\mathrm{P}(A \cap D)-\mathrm{P}(B \cap C)-\mathrm{P}(B \cap D)-\mathrm{P}(C \cap D) \\
+\mathrm{P}(A \cap B \cap C)+\mathrm{P}(A \cap B \cap D)+\mathrm{P}(A \cap C \cap D)+\mathrm{P}(B \cap C \cap D)-\mathrm{P}(A \cap B \cap C \cap D)
\end{gathered}
$$

(i) $\mathrm{P}\left(E_{i}\right)=\frac{1}{n}$
(ii) $\mathrm{P}\left(E_{i} \cap E_{j}\right)=\frac{1}{n(n-1)}$
(iii) $\mathrm{P}\left(E_{i} \cap E_{j} \cap E_{k}\right)=\frac{1}{n(n-1)(n-2)}$

There are $\binom{n}{r}$ ways for r of the n cards to be correct, with probability $\frac{(n-r)!}{n!}$.
$\mathrm{P}($ at least one card is in the same position as the number it bears $)=\mathrm{P}\left(E_{1} \cup E_{2} \cup \cdots \cup E_{n}\right)$
$=\binom{n}{1} \frac{1}{n}-\binom{n}{2} \frac{1}{n(n-1)}+\binom{n}{3} \frac{1}{n(n-1)(n-2)}-\cdots+(-1)^{n+1}\binom{n}{n} \frac{1}{n(n-1)(n-2) \cdots 1}$
$=\frac{n!(n-1)!}{1!(n-1)!n!}-\frac{n!(n-2)!}{2!(n-2)!n!}+\frac{n!(n-3)!}{3!(n-3)!n!}-\cdots+(-1)^{n+1} \frac{n!(n-n)!}{n!(n-n)!n!}$
$=1-\frac{1}{2!}+\frac{1}{3!}-\cdots+(-1)^{n+1} \frac{1}{n!}$, as required.
$\mathrm{P}($ Exactly one correct $)=n \mathrm{P}($ One chosen correct, all others wrong $)$.
$\mathrm{P}(1$ chosen correct $)=\frac{1}{n}$
$\mathrm{P}((n-1)$ all wrong $)=1-\mathrm{P}($ At least one right out of $(n-1))=\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\cdots+(-1)^{n} \frac{1}{(n-1)!}$
$\Longrightarrow \mathrm{P}($ Exactly one correct $)=n \times \frac{1}{n} \times\left(\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\cdots+(-1)^{n} \frac{1}{(n-1)!}\right)$
$\Longrightarrow \mathrm{P}($ Exactly one correct $)=\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\cdots+(-1)^{n} \frac{1}{(n-1)!}$
(i) The random variable X has a binomial distribution with parameters n and p, where $n=16$ and $p=\frac{1}{2}$. Show, using an approximation in terms of the standard normal density function $\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-\frac{1}{2} x^{2}}$, that

$$
\mathrm{P}(X=8) \approx \frac{1}{2 \sqrt{2 \pi}}
$$

(ii) By considering a binomial distribution with parameters $2 n$ and $\frac{1}{2}$, show that

$$
(2 n)!\approx \frac{2^{2 n}(n!)^{2}}{\sqrt{n \pi}}
$$

(iii) By considering a Poisson distribution with parameter n, show that

$$
n!\approx \sqrt{2 \pi n} \mathrm{e}^{-n} n^{n}
$$

Solution by Mathemagicien.

(i) $\quad X \sim \mathrm{~B}\left(16, \frac{1}{2}\right) \approx Y \sim \mathrm{~N}\left(8,2^{2}\right)$.

$$
\begin{aligned}
& \Longrightarrow \mathrm{P}(X=8) \approx \mathrm{P}(7.5<Y<8.5)=\mathrm{P}(7.5<2 Z+8<8.5)=\mathrm{P}(-0.25<Z<0.25) \\
& =\int_{-\frac{1}{4}}^{\frac{1}{4}} \frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-\frac{1}{2} x^{2}} \mathrm{~d} x \approx \int_{-\frac{1}{4}}^{\frac{1}{4}} \frac{1}{\sqrt{2 \pi}} \mathrm{~d} x=\frac{2}{4} \frac{1}{\sqrt{2 \pi}}=\frac{1}{2 \sqrt{2 \pi}} \Longrightarrow \mathrm{P}(X=8) \approx \frac{1}{2 \sqrt{2 \pi}}
\end{aligned}
$$

(ii) Let $A \sim \mathrm{~B}\left(2 n, \frac{1}{2}\right) \approx \mathrm{N}\left(n, \frac{n}{2}\right) \Longrightarrow \mathrm{P}(A=n) \approx \mathrm{P}\left(n-\frac{1}{2}<\sqrt{\frac{n}{2}} Z+n<n+\frac{1}{2}\right)$.
$\Longrightarrow\binom{2 n}{n}\left(\frac{1}{2}\right)^{2 n} \approx \mathrm{P}\left(-\frac{1}{\sqrt{2 n}}<Z<\frac{1}{\sqrt{2 n}}\right)=\int_{-\frac{1}{\sqrt{2 n}}}^{\frac{1}{\sqrt{2 n}}} \frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-\frac{1}{2} x^{2}} \mathrm{~d} x \approx \frac{2}{\sqrt{2 n} \sqrt{2 \pi}}$.
$\Longrightarrow(2 n)!\approx \frac{2^{2 n}(n!)^{2}}{\sqrt{n \pi}}$.
(iii) Let $E \sim \mathrm{Po}(n) \approx \mathrm{N}(n, n) \Longrightarrow \mathrm{P}(E=n)=\frac{\mathrm{e}^{-n} n^{n}}{n!} \approx \mathrm{P}\left(n-\frac{1}{2}<\sqrt{n} Z+n<n+\frac{1}{2}\right)$.
$\Longrightarrow \frac{\mathrm{e}^{-n} n^{n}}{n!} \approx \int_{-\frac{1}{2 \sqrt{\pi}}}^{\frac{1}{2 \sqrt{\pi}}} \frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-\frac{1}{2} x^{2}} \mathrm{~d} x \approx \frac{2}{2 \sqrt{n} \sqrt{2 \pi}} \Longrightarrow n!\approx \sqrt{2 \pi n} \mathrm{e}^{-n} n^{n}$.

