QUESTION 7

$\omega=e^{\frac{2 \pi i}{n}} \Rightarrow 1, \omega, \omega^{2}, \ldots, \omega^{n-1}$ are the $n^{\text {th }}$ roots of 1
Consider the product $P(z)=(z-1)(z-w)\left(z-\omega^{2}\right) \ldots\left(z-\omega^{n-1}\right)$
Putting $z=1, z=\omega, z=\omega^{2}, \ldots, z=\omega^{n-1}$ into $P(z)$ successively we get zero each time.

Therefore $P(z)$ is a polynomial in z such that, when $P(z)=0$ its roots are all the $n^{\text {th }}$ roots of 1 .

Therefore we can write $P(z)=z^{n}-1$.

Part (i)

Let $X_{k}=e^{\frac{2 k \pi i}{n}}$ for $k=0,1,2, \ldots, n-1$
Let point $P=a e^{\frac{\pi i}{n}}$ for $a \in \mathbb{R}, a \neq 0$

Putting $z=P$ into $P(z)$ we have :-

$$
\left(P-X_{0}\right)\left(P-X_{1}\right) \ldots\left(P-X_{n-1}\right)=P^{n}-1
$$

Since $\left|P-X_{k}\right|=\left|P X_{k}\right|$ (as defined) we have:-

$$
\begin{aligned}
\left|P X_{0}\right| \times\left|P X_{1}\right| \times\left|P X_{2}\right| \times \ldots \times\left|P X_{n-1}\right| & =\left|\left(a e^{\frac{\pi i}{n}}\right)^{n}-1\right| \\
& =\left|-a^{n}-1\right|=a^{n}+1=|O P|^{n}+1
\end{aligned}
$$

(Note: for all $n \in \mathbb{N}\left(e^{\frac{\pi i}{n}}\right)^{n}=-1$ and n even $\Rightarrow a^{n}>0$ for all $a \neq 0$) Suppose n is odd.

If $a>0$ with n odd $\Rightarrow a^{n}>0$ and we have the same result as above.
If $a<0$ with n odd $\Rightarrow a^{n}<0 \Rightarrow\left(a e^{\frac{i \pi}{n}}\right)^{n}=|a|^{n}>0$ then the result becomes as follows:-

$$
\begin{aligned}
&\left|P X_{0}\right| \times\left|P X_{1}\right| \times\left|P X_{2}\right| \times \ldots \times\left|P X_{n-1}\right|=\left|\left(a e^{\frac{\pi i}{n}}\right)^{n}-1\right| \\
&=\left|-a^{n}-1\right|=\left||a|^{n}-1\right|=\left\{\begin{array}{l}
|O P|^{n}-1 \text { for }|a| \geq 1 \\
1-|O P|^{n} \text { for }|a|<1
\end{array}\right.
\end{aligned}
$$

Part (ii)

Consider the equation $\sum_{k=0}^{n-1} z^{k}=0$
Now $(z-1) \sum_{k=0}^{n-1} z^{k}=z^{n}-1=0$
We know the roots of this equation, they are the $n^{\text {th }}$ roots of 1 . By multiplying by $z-1$ we have simply included the root 1 .

Therefore $\sum_{k=0}^{n-1} z^{k}=0$ must have all the $n^{\text {th }}$ roots of 1 except 1.

Therefore $\sum_{k=0}^{n-1} z^{k}=(z-\omega)\left(z-\omega^{2}\right) \ldots\left(z-\omega^{n-1}\right)$
Putting $z=1$ we have :-

$$
\Rightarrow n=(1-\omega)\left(1-\omega^{2}\right) \ldots\left(1-\omega^{n-1}\right)
$$

Taking the modulus of both sides:-

$$
n=\left|X_{0} X_{1}\right| \times\left|X_{0} X_{2}\right| \times \ldots \times\left|X_{0} X_{n-1}\right|
$$

