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Consider the product ( ) ( )( ) ( ) ( )2 11 ... n
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Putting ( ) into  we have :-z P P z=   
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Suppose  is odd.n   
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Part (ii) 
 

Consider the equation 

1

0

0
n

k

k

z

−

=

=∑   

 

Now ( )
1

0

1 1 0
n

k n

k

z z z

−

=

− = − =∑   

 

We know the roots of this equation, they are the 
th
n  roots of 1. By multiplying by 

1z −  we have simply included the root 1. 
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Putting 1 we have :-z =   
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Taking the modulus of both sides:- 
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