

Unit 4 Topic 3 Particle physics

- 1 (a) Lots of energy needed (1) to produce the extra mass (1)
 - (b) Conservation of charge (1)

Conservation of lepton number (1)

Conservation of baryon number (1)

(c) They annihilate one another (1) giving rise to γ -ray/ γ photon (1)

Energy of γ-ray

- $= 2 \times 0.00055 \times 930 \text{ MeV}$ (1)
- = 1.0/1.02/1.023 MeV (1)

(Total 9 marks)

- 2 (a) (i) n = udd and p = uud (1) β^- and \overline{v} have no quarks / are leptons / are fundamental (1)
 - (ii) $p \to n$ (1) + $\beta^+ + v$ [allow e^+] (1)
 - (b) Baryon and hadron (1) Lepton (1)
 - (c) (i) Antiproton [or anti-up quark, anti-down quark] and positron (1)
 - (ii) $\overline{p} = -1$ and $e^+ = +1$ [accept correct \overline{u} , \overline{d} charges for \overline{p}] (1) \overline{u} \overline{u} \overline{d} (e^+ fundamental / no quarks) [e.c.f. from (b), credit if in (i)] (1)
 - (iii) Zero / neutral (1)
 - (iv) Annihilates (2) [on contact with matter / container / protons / H] OR Not charged: not affected by magnetic fields (2)

(Total 12 marks)

3 Charge on strange quark:

$$-1/3$$
 (1)

Conservation law:

Charge $-(-1) + (+1) \rightarrow (0) + X/by$ charge conservation (1)

X is neutral (1)

Meson or baryon:

Particle X is a meson (1)

Baryon number conservation $(0) + (+1) \rightarrow (+1) + (0)$ (1)

OR Discussion in terms of total number of $q + \overline{q} = 5$ OR $\Sigma q - \overline{q} = 3$

Composition of X

Is sd $[0/3 \text{ if not } q\overline{q}]$ (1)

Justify S quark: This is not a weak interaction/only a weak interaction can change quark type/this is a strong interaction/strangeness is conserved/ quark flavour cannot change (1) Justify \overline{d} quark: X neutral; s - 1/3; $\overline{d} + 1/3$. [e.c.f. if s = -1/3 in first line.]

For the third mark accept any $q \bar{q}$ pair that creates a meson of the charge deduced for X above. (1) [The justification for both q and \bar{q} can be done also by tracking individual quarks]

Unit 4 Topic 3 Particle physics (cont.)

4 Similarity

Any 1 from:

- both nuclear decay products
- both charged/ionise/damage tissue
- both have momentum
- both deflected by electric fields
- by magnetic fields (1)

Differences

Any 2 from:

- β fundamental, α not
- mass $\alpha \gg$ mass β
- α positive, β either
- β a lepton, α composed of hadrons
- α is He²⁺, β is e⁺ or e⁻ (2)

[A difference must mention BOTH particles]

[If discussing spectrum shape needs 'given source' idea]

(Total 3 marks)

5 Meson or bayron:

 Ω^- is a baryon [no mark]

p is a baryon/need to conserve baryon number (1)

Strangeness – 3 needs three quarks (1)

Composition

p is uud

 Ω^- is sss

All Ks quark-antiquark pairs

 K^- is $\overline{u}s$; K^+ is $u\overline{s}$; K^0 is $d\overline{s}$ [all correct, 4]

(Total 6 marks)

6 Explanation:

Diffraction (1)

Molecular/atomic separation ≅1 nm/de Broglie wavelength (1)

Kinetic energy:

Use of $\lambda = h/mv$ (1)

Use of KE = $\frac{1}{2} mv^2$ OR $p^2/2m$ (1)

 $KE = 9.1-9.2 \times 10^{-23} \text{ J [no e.c.f.]}$ (1)

Wave-particle duality:

Quality of written communication (1)

When a wave/particle behaves like / has properties / has characteristics

of a particle/wave (1)

Neutron is a particle in the (α) nucleus / it has momentum / mass / can collide (1)

Neutrons diffract/interfere, a wave-like property. (1)

(Total 9 marks)