

Mathematics in Education and Industry

MEI STRUCTURED MATHEMATICS

METHODS FOR ADVANCED MATHEMATICS, C3

Practice Paper C3-D

Additional materials:	Answer booklet/paper
	Graph paper
	List of formulae (MF2)

TIME 1 hour 30 minutes

INSTRUCTIONS

- Write your Name on each sheet of paper used or the front of the booklet used.
- Answer **all** the questions.
- You are permitted to use a graphical calculator in this paper.

INFORMATION

- The number of marks is given in brackets [] at the end of each question or part-question.
- You are advised that an answer may receive **no marks** unless you show sufficient detail of the working to indicate that a correct method is being used.
- Final answers should be given to a degree of accuracy appropriate to the context.
- The total number of marks for this paper is **72**.
- You are reminded of the need for clear presentation in your answers.

© MEI February 2005

Section A (36 marks)

1 You are given that $y^2 = 4x + 7$.

(i) Use implicit differentiation to find
$$\frac{dy}{dx}$$
 in terms of y. [2]

(ii) Make *x* the subject of the equation.

Find
$$\frac{dx}{dy}$$
 and hence show that in this case $\frac{dx}{dy} = \frac{1}{\frac{dy}{dx}}$. [3]

2 (i) Expand
$$(e^x + e^{-x})^2$$
. [1]

(ii) Hence find
$$\int \left(e^x + e^{-x}\right)^2 dx$$
. [3]

3 (i) Sketch the graph of
$$y = |3x-6|$$
. [2]

(ii) Solve the equation |3x-6| = x+4 and illustrate your answer on your graph. [4]

4 Find
$$\int x \sin 3x \, dx$$
. [4]

5 Make x the subject of
$$t = \ln \sqrt{\frac{5}{(x-3)}}$$
. [4]

6 The function f(x) is defined as $f(x) = \frac{\ln x}{x}$. The graph of the function is shown in Fig. 6.

Fig. 6

- (i) Give the coordinates of the point, P, where the curve crosses the *x*-axis. [1]
- (ii) Use calculus to find the coordinates of the stationary point, Q, and show that it is a maximum. [6]

7 An oil slick is circular with radius *r* km and area $A \text{ km}^2$. The radius increases with time at a rate given by $\frac{dr}{dt} = 0.5$, in kilometres per hour.

(i) Show that
$$\frac{dA}{dt} = \pi r$$
. [4]

(ii) Find the rate of increase of the area of the slick at a time when the radius is 6 km. [2]

Section B (36 marks)

8 Fig. 8 shows the graph of $y = x\sqrt{1+x}$. The point P on the curve is on the *x*-axis.

Fig. 8

(i) Write down the coordinates of P.

(ii) Show that
$$\frac{dy}{dx} = \frac{3x+2}{2\sqrt{1+x}}$$
. [4]

- (iii) Hence find the coordinates of the turning point on the curve.What can you say about the gradient of the curve at P? [4]
- (iv) By using a suitable substitution, show that $\int_{-1}^{0} x\sqrt{1+x} \, dx = \int_{0}^{1} \left(u^{\frac{3}{2}} u^{\frac{1}{2}} \right) du$. Evaluate this integral, giving your answer in an exact form.

What does this value represent?

[7]

[1]

(v) Use your answer to part (ii) to differentiate $y = x\sqrt{1+x} \sin 2x$ with respect to x. (You need not simplify your result.) [2] 9 The functions f(x) and g(x) are defined by

$$f(x) = x^2$$
, $g(x) = 2x - 1$,

for all real values of *x*.

(i)	State the ranges of $f(x)$ and $g(x)$. Explain why $f(x)$ has no inverse.	[3]
(ii)	Find an expression for the inverse function $g^{-1}(x)$ in terms of <i>x</i> . Sketch the graphs of $y = g(x)$ and $y = g^{-1}(x)$ on the same axes.	[4]
(iii)	Find expressions for $gf(x)$ and $fg(x)$.	[2]
(iv)	Solve the equation $gf(x) = fg(x)$.	
	Sketch the graphs of $y = gf(x)$ and $y = fg(x)$ on the same axes to illustrate your answer.	[4]
(v)	Show that the equation $f(x + a) = g^2(x)$ has no solution if $a > \frac{1}{4}$.	[5]

© MEI February, 2005 MEI Structured Mathematics Practice Paper C3-D Page 4

Mathematics in Education and Industry

MEI STRUCTURED MATHEMATICS

METHODS OF ADVANCED MATHEMATICS, C3

Practice Paper C3-D

MARK SCHEME

© MEI February 2005

Qu		Answer	Mar	k	Comment
Sect	ion A		•		•
1	(i)	$y^{2} = 4x + 7 \Longrightarrow 2y. \frac{dy}{dx} = 4$ $\Longrightarrow \frac{dy}{dx} = \frac{2}{y}$	M1 A1	2	
	(ii)	$x = \frac{1}{4} \left(y^2 - 7 \right) \Longrightarrow \frac{dx}{dy} = \frac{1}{4} \cdot 2y = \frac{y}{2} = \frac{1}{\frac{2}{y}}$	B1 M1 A1	3	
2	(i)	$e^{2x} + 2 + e^{-2x}$	B1	1	
	(ii)	$= \int (e^{2x} + 2 + e^{-2x}) dx$ = $\frac{1}{2}e^{2x} + 2x - \frac{1}{2}e^{-2x} + c$	B1 B1 B1	3	One for each exponential term, one for both 2x and constant.
3	(i)		B1 B1	2	One for two half lines; one for correct orientation and meeting at (2,0).
	(ii)	At P -3x+6 = x+4 $\Rightarrow x = \frac{1}{2}$ At Q 3x-6 = x+4 $\Rightarrow x = 5$ The solution is $x = \frac{1}{2}, 5$. As shown on graph	M1 A1 A1 E1	4	
4		$\int x \sin 3x dx; u = x \Rightarrow \frac{du}{dx} = 1, \frac{dv}{dx} = \sin 3x \Rightarrow v = -\frac{1}{3}\cos x$ $= -\frac{1}{3}x\cos 3x + \int \frac{1}{3}\cos 3x dx$ $= -\frac{1}{3}x\cos 3x + \frac{1}{9}\sin 3x + c$	M1 A1 M1 A1	4	Choice of u $-\frac{1}{3}\cos 3x$ Correct form c must be seen

5		5			
		$t = \ln \sqrt{\frac{5}{(x-3)}}$			
		V(x-3)	M1		Rules of
		1, (x-3)			logs
		$=-\frac{1}{2}\ln\frac{(x-3)}{5}$	M1		Change to
					exponentials
		$\Rightarrow -2t = \ln \frac{(x-3)}{5}$	A1		- F
			A1		
		$\Rightarrow e^{-2t} = \frac{(x-3)}{5} \Rightarrow x = 5e^{-2t} + 3$		4	
6	(i)	P(1,0)	B1		
U	(1)	1(1,0)	DI	1	
	(ii)	1		-	
	(11)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x \cdot \frac{1}{x} - 1 \cdot \ln x}{x^2}$			
		$\frac{dy}{du} = \frac{x}{u^2}$	M1		quotient rule
					.1
		$=\frac{1-\ln x}{x^2}$	A1		
		X			
		At Q, gradient is zero, so $x = e$.	M1		= 0
		Q is $(e, \frac{1}{e})$.	A1		
		$\frac{d^2 y}{dx^2} = \frac{x^2(-\frac{1}{x}) - (1 - \ln x).2x}{x^4}$			
		$d^2y = \frac{x^2() - (1 - \ln x) \cdot 2x}{x}$			
		$\frac{1}{dx^2} = \frac{1}{x^4}$	M1		Or
					equivalent
		$=\frac{-3+2\ln x}{x^3}$			methods
		λ When μ a this is μ as Ω is a maximum	A1		
		When $x = e$, this is -ve, so Q is a maximum.		6	1
					For $^{1}/_{e}$.
7	(i)	$A = \pi r^2 \Longrightarrow \frac{\mathrm{d}A}{\mathrm{d}r} = 2\pi r$	M1		
		$dr = 2\pi r$	A1		
		dA dA dr 1	M1		
		$\Rightarrow \frac{\mathrm{d}A}{\mathrm{d}t} = \frac{\mathrm{d}A}{\mathrm{d}r} \cdot \frac{\mathrm{d}r}{\mathrm{d}t} = \frac{1}{2} \times 2\pi r = \pi r$	A1		
	(•••			4	
	(ii)	So when $r = 6$,			Genterative di
		$\frac{dA}{dt} = 6\pi \ (=15.707) .$	M1		Substituting
		The area increases at $15.7 \text{ km}^2 \text{h}^{-1}$, to 3sf.	A 1		
			A1	2	
	<u> </u>			2	<u> </u>

Section B							
8 (i) P(-1,0) B1							
				1			
	(ii)	$y = x\sqrt{1+x}$					
		$= x(1+x)^{\frac{1}{2}}$	M1		Product rule		
		$\Rightarrow \frac{dy}{dx} = 1.(1+x)^{\frac{1}{2}} + x.\frac{1}{2}(1+x)^{-\frac{1}{2}}$	A1		Any correct		
		dx = 2(1 + 1) + 12(1 + 1)	M1		expression Combining		
		$=\frac{2(1+x)+x}{2(1+x)^{\frac{1}{2}}}$	1111		fractions		
		$2(1+x)^{\frac{1}{2}}$			nuctions		
		3x + 2	E1				
		$=\frac{3x+2}{2\sqrt{1+x}}$		4			
	(iii)	At a turning point, gradient is zero.					
	, ,	$x = -\frac{2}{3}$ there. Then	M1				
			A1				
		$y = -\frac{2}{3}\sqrt{\frac{1}{3}}$			Accept a		
		5 1 5			simplified form with		
		$=-\frac{2\sqrt{3}}{2}$			$\sqrt{3}$ in the		
		9	A1		bottom.		
		These are the coordinates of the TP.			Accept		
					reference to		
		At P the gradient is undefined.	B1		infinity or to		
				4	vertical.		
	(iv)	$\int_{-1}^{0} x\sqrt{1+x} dx$ = $\int_{0}^{1} (u-1)u^{\frac{1}{2}} du, u = 1+x$					
		$\int_{-1}^{1} (1) \frac{1}{2} I = 1$			Integral in <i>u</i>		
			M1		integral in a		
		$\Rightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = 1$			Change of		
			E1		limits		
		$=\int_{-1}^{1}(u^{\frac{3}{2}}-u^{\frac{1}{2}})du$					
		J ₀ (<i>iii iii</i>) (<i>iii</i>)					
		$= \int_{0}^{1} (u^{\frac{3}{2}} - u^{\frac{1}{2}}) du$ $= \left[\frac{2}{5}u^{\frac{5}{2}} - \frac{2}{3}u^{\frac{3}{2}}\right]_{0}^{1}$	M1A1	1	Integrating		
		$\lfloor 5 \\ 3 \\ \rfloor_0$	1711/1	•	megraning		
		4	A1				
		$=-\frac{4}{15}$					
		The magnitude represents the area bounded by the curve and	B1		One for		
		axis between P and O. It is negative because the curve is	B1	-	geometry		
		below the axis (except at the end points).		7	and one for		
	(v)	$y = x\sqrt{1+x}\sin 2x$			sign.		
		-					
		$\Rightarrow \frac{dy}{dx} = \frac{3x+2}{2\sqrt{1+x}} \sin 2x + x\sqrt{1+x} \cdot 2\cos 2x$	M1A1	1			
		$dx 2\sqrt{1+x}$		2			

9	(i)	Range of f is $[0,\infty)$,	B1		
		of g $(-\infty,\infty)$.	B1		
		f has no inverse because (say) for any value of $f > 0$ there are	E1		
		2 corresponding values of <i>x</i>	21	3	
	(ii)	y = 2x - 1			
		$\Rightarrow x = \frac{1}{2}y + \frac{1}{2}$	N/1		One mark
			M1		for one line, and one
		$\Rightarrow g^{-1}(x) = \frac{1}{2}x + \frac{1}{2}$	A1		mark for
		2 2			second correctly
		4 y y=g(x)			related
		3 'y=x	B1		
			B1		
		$y=g^{nt}(x)$			
		0.5			
				4	
	(iii)	$gf(x) = 2x^2 - 1$	B1		
		$\mathrm{fg}(x) = (2x-1)^2$	B1	2	
	(iv)			_	
		$2x^2 - 1 = (2x - 1)^2$	M1 A1		
		$\Rightarrow 0 = 2x^2 - 4x + 2$	AI		
		$\Rightarrow 0 = 2(x-1)^2$			
		$\Rightarrow x = 1$	B1		$y = (2x - 1)^2$
		$y = (2x - 1)^2$			$y = (2x - 1)^2$
			B1		$y = (2x - 1)^2$
		-1 $y = 2x^2 - 1$		4	
	(v)	$f(x+a) = (x+a)^2$		-	
		$g^{2}(x) = 2(2x-1) - 1 = 4x - 3$	B1		Both fns correct
		$f(x+a) = g^{2}(x) \Longrightarrow (x+a)^{2} = 4x - 3$	M1		Equating
		$\Rightarrow x^2 + (2a - 4)x + a^2 + 3 = 0$	M1		Using
		\Rightarrow There are two roots to this equation if	111		$b^2 - 4ac$
		$(2a-4)^2 > 4(a^2+3)$	A1		Correct
		i.e. $4a^2 - 16a + 16 > 4a^2 + 12$			inequality
		$\Rightarrow 16a < 4 \Rightarrow a < \frac{1}{4}$	A1		Result
		4		5	