MEI STRUCTURED MATHEMATICS

METHODS FOR ADVANCED MATHEMATICS, C3

Practice Paper C3-D

Additional materials: Answer booklet/paper
Graph paper
List of formulae (MF2)

TIME 1 hour 30 minutes

INSTRUCTIONS

- Write your Name on each sheet of paper used or the front of the booklet used.
- Answer all the questions.
- You are permitted to use a graphical calculator in this paper.

INFORMATION

- The number of marks is given in brackets [] at the end of each question or part-question.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
- Final answers should be given to a degree of accuracy appropriate to the context.
- The total number of marks for this paper is 72.
- You are reminded of the need for clear presentation in your answers.

Section A (36 marks)

1 You are given that $y^{2}=4 x+7$.
(i) Use implicit differentiation to find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of y.
(ii) Make x the subject of the equation.

$$
\begin{equation*}
\text { Find } \frac{\mathrm{d} x}{\mathrm{~d} y} \text { and hence show that in this case } \frac{\mathrm{d} x}{\mathrm{~d} y}=\frac{1}{\frac{\mathrm{~d} y}{\mathrm{~d} x}} \text {. } \tag{3}
\end{equation*}
$$

2 (i) Expand $\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)^{2}$.
(ii) Hence find $\int\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)^{2} \mathrm{~d} x$.

3 (i) Sketch the graph of $y=|3 x-6|$.
(ii) Solve the equation $|3 x-6|=x+4$ and illustrate your answer on your graph.

4 Find $\int x \sin 3 x \mathrm{~d} x$.

5 Make x the subject of $t=\ln \sqrt{\frac{5}{(x-3)}}$.

6 The function $\mathrm{f}(x)$ is defined as $\mathrm{f}(x)=\frac{\ln x}{x}$. The graph of the function is shown in Fig. 6 .

Fig. 6
(i) Give the coordinates of the point, P , where the curve crosses the x-axis.
(ii) Use calculus to find the coordinates of the stationary point, Q , and show that it is a maximum.

7 An oil slick is circular with radius $r \mathrm{~km}$ and area $A \mathrm{~km}^{2}$. The radius increases with time at a rate given by $\frac{\mathrm{d} r}{\mathrm{~d} t}=0.5$, in kilometres per hour.
(i) Show that $\frac{\mathrm{dA}}{\mathrm{d} t}=\pi r$.
(ii) Find the rate of increase of the area of the slick at a time when the radius is 6 km .

Section B (36 marks)

8 Fig. 8 shows the graph of $y=x \sqrt{1+x}$. The point P on the curve is on the x-axis.

Fig. 8
(i) Write down the coordinates of P .
(ii) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3 x+2}{2 \sqrt{1+x}}$.
(iii) Hence find the coordinates of the turning point on the curve.

What can you say about the gradient of the curve at P?
(iv) By using a suitable substitution, show that $\int_{-1}^{0} x \sqrt{1+x} \mathrm{~d} x=\int_{0}^{1}\left(u^{\frac{3}{2}}-u^{\frac{1}{2}}\right) \mathrm{d} u$.

Evaluate this integral, giving your answer in an exact form.
What does this value represent?
(v) Use your answer to part (ii) to differentiate $y=x \sqrt{1+x} \sin 2 x$ with respect to x. (You need not simplify your result.)

9 The functions $\mathrm{f}(x)$ and $\mathrm{g}(x)$ are defined by

$$
\mathrm{f}(x)=x^{2}, \quad \mathrm{~g}(x)=2 x-1
$$

for all real values of x.
(i) State the ranges of $\mathrm{f}(x)$ and $\mathrm{g}(x)$.

Explain why $\mathrm{f}(x)$ has no inverse.
(ii) Find an expression for the inverse function $\mathrm{g}^{-1}(x)$ in terms of x.

Sketch the graphs of $y=\mathrm{g}(x)$ and $y=\mathrm{g}^{-1}(x)$ on the same axes.
(iii) Find expressions for $\operatorname{gf}(x)$ and $\operatorname{fg}(x)$.
(iv) Solve the equation $\operatorname{gf}(x)=\operatorname{fg}(x)$.

Sketch the graphs of $y=\operatorname{gf}(x)$ and $y=\operatorname{fg}(x)$ on the same axes to illustrate your answer.
(v) Show that the equation $\mathrm{f}(x+a)=\mathrm{g}^{2}(x)$ has no solution if $a>\frac{1}{4}$.

MEI STRUCTURED MATHEMATICS

METHODS OF ADVANCED MATHEMATICS, C3

Practice Paper C3-D

MARK SCHEME

Qu		Answer	Mark	Comment
Section A				
1	(i)	$\begin{aligned} & y^{2}=4 x+7 \Rightarrow 2 y \cdot \frac{\mathrm{~d} y}{\mathrm{~d} x}=4 \\ & \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2}{y} \end{aligned}$	M1 A1 2	
	(ii)	$x=\frac{1}{4}\left(y^{2}-7\right) \Rightarrow \frac{\mathrm{d} x}{\mathrm{~d} y}=\frac{1}{4} \cdot 2 y=\frac{y}{2}=\frac{1}{\frac{2}{y}}$	B1 M1 A1 3	
2	(i)	$\mathrm{e}^{2 x}+2+\mathrm{e}^{-2 x}$	B1	
	(ii)	$\begin{aligned} & =\int\left(e^{2 x}+2+e^{-2 x}\right) d x \\ & =\frac{1}{2} e^{2 x}+2 x-\frac{1}{2} e^{-2 x}+c \end{aligned}$	B1 B1 B1 3	One for each exponential term, one for both $2 x$ and constant.
3	(i)		B1 B1	One for two half lines; one for correct orientation and meeting at $(2,0)$.
	(ii)	$\begin{aligned} & \text { At } \mathrm{P} \\ & -3 x+6=x+4 \\ & \Rightarrow \quad x=\frac{1}{2} \\ & \text { At Q } \\ & 3 x-6=x+4 \\ & \Rightarrow \quad x=5 \end{aligned}$ The solution is $x=\frac{1}{2}, 5$. As shown on graph	M1 A1 A1 E1 4	
4		$\begin{aligned} & \int x \sin 3 x \mathrm{~d} x ; \quad u=x \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=1, \frac{\mathrm{~d} v}{\mathrm{~d} x}=\sin 3 x \Rightarrow v=-\frac{1}{3} \cos x \\ & =-\frac{1}{3} x \cos 3 x+\int \frac{1}{3} \cos 3 x \mathrm{~d} x \\ & =-\frac{1}{3} x \cos 3 x+\frac{1}{9} \sin 3 x+c \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ & \\ \text { A1 } & \\ \text { M1 } & \\ \text { A1 } & \\ & \\ & \end{array}$	Choice of u $-\frac{1}{3} \cos 3 x$ Correct form c must be seen

5		$\begin{aligned} t & =\ln \sqrt{\frac{5}{(x-3)}} \\ & =-\frac{1}{2} \ln \frac{(x-3)}{5} \\ \Rightarrow-2 t & =\ln \frac{(x-3)}{5} \\ \Rightarrow \mathrm{e}^{-2 t} & =\frac{(x-3)}{5} \Rightarrow x=5 \mathrm{e}^{-2 t}+3 \end{aligned}$	$\begin{array}{ll}\text { M1 } & \\ \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & \\ & 4\end{array}$	Rules of logs Change to exponentials
6	(i)	$\mathrm{P}(1,0)$	$\begin{array}{\|ll\|} \hline \text { B1 } & \\ & \mathbf{1} \\ \hline \end{array}$	
	(ii)	$\begin{aligned} \frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{x \cdot \frac{1}{x}-1 \cdot \ln x}{x^{2}} \\ & =\frac{1-\ln x}{x^{2}} \end{aligned}$ At Q , gradient is zero, so $x=\mathrm{e}$. Q is $\left(\mathrm{e}, \frac{1}{\mathrm{e}}\right)$. $\begin{aligned} \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}} & =\frac{x^{2}\left(-\frac{1}{x}\right)-(1-\ln x) \cdot 2 x}{x^{4}} \\ & =\frac{-3+2 \ln x}{x^{3}} \end{aligned}$ When $x=\mathrm{e}$, this is -ve , so Q is a maximum.	M1 A1 M1 A1 M1 A1 6	quotient rule $=0$ Or equivalent methods For $1 /$.
7	(i)	$\begin{aligned} A & =\pi r^{2} \Rightarrow \frac{\mathrm{~d} A}{\mathrm{~d} r}=2 \pi r \\ \Rightarrow & \frac{\mathrm{~d} A}{\mathrm{~d} t}=\frac{\mathrm{d} A}{\mathrm{~d} r} \cdot \frac{\mathrm{~d} r}{\mathrm{~d} t}=\frac{1}{2} \times 2 \pi r=\pi r \end{aligned}$	$\begin{array}{cc} \hline \text { M1 } & \\ \text { A1 } & \\ \text { M1 } & \\ \text { A1 } & \\ & 4 \end{array}$	
	(ii)	So when $r=6$, $\frac{\mathrm{d} A}{\mathrm{~d} t}=6 \pi(=15.707 \ldots)$ The area increases at $15.7 \mathrm{~km}^{2} \mathrm{~h}^{-1}$, to 3 sf .	$\begin{array}{ll} \text { M1 } & \\ & \\ \text { A1 } & \\ & 2 \end{array}$	Substituting

Section B				
8	(i)	$\mathrm{P}(-1,0)$	$\begin{array}{ll} \hline \text { B1 } & \\ & \mathbf{1} \\ \hline \end{array}$	
	(ii)	$\begin{aligned} y & =x \sqrt{1+x} \\ & =x(1+x)^{\frac{1}{2}} \\ \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x} & =1 \cdot(1+x)^{\frac{1}{2}}+x \cdot \frac{1}{2}(1+x)^{-\frac{1}{2}} \\ & =\frac{2(1+x)+x}{2(1+x)^{\frac{1}{2}}} \\ & =\frac{3 x+2}{2 \sqrt{1+x}} \end{aligned}$	$\begin{array}{ll}\text { M1 } & \\ \text { A1 } & \\ \text { M1 } & \\ \text { E1 } & \\ & 4\end{array}$	Product rule Any correct expression Combining fractions
	(iii)	At a turning point, gradient is zero. $x=-\frac{2}{3}$ there. Then $\begin{aligned} y & =-\frac{2}{3} \sqrt{\frac{1}{3}} \\ & =-\frac{2 \sqrt{3}}{9} \end{aligned}$ These are the coordinates of the TP. At P the gradient is undefined.	B1	Accept a simplified form with $\sqrt{3}$ in the bottom. Accept reference to infinity or to vertical.
	(iv)	$\begin{aligned} & \int_{-1}^{0} x \sqrt{1+x} d x \\ & =\int_{0}^{1}(u-1) u^{\frac{1}{2}} d u, \quad u=1+x \\ & \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=1 \\ & =\int_{0}^{1}\left(u^{\frac{3}{2}}-u^{\frac{1}{2}}\right) d u \\ & =\left[\frac{2}{5} u^{\frac{5}{2}}-\frac{2}{3} u^{\frac{3}{2}}\right]_{0}^{1} \\ & =-\frac{4}{15} \end{aligned}$ The magnitude represents the area bounded by the curve and axis between P and O . It is negative because the curve is below the axis (except at the end points).	M1 E1 M1A1 A1 B1 B1 7	Integral in u Change of limits Integrating One for geometry and one for sign.
	(v)	$\begin{aligned} y & =x \sqrt{1+x} \sin 2 x \\ \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x} & =\frac{3 x+2}{2 \sqrt{1+x}} \sin 2 x+x \sqrt{1+x} \cdot 2 \cos 2 x \end{aligned}$	$\begin{array}{r} \mathrm{M} 1 \mathrm{~A} 1 \\ 2 \end{array}$	

9	(i)	Range of f is $[0, \infty)$, of $g(-\infty, \infty)$. f has no inverse because (say) for any value of $f>0$ there are 2 corresponding values of x	B1 E1 3	
	(ii)	$\begin{aligned} y & =2 x-1 \\ \Rightarrow x & =\frac{1}{2} y+\frac{1}{2} \\ \Rightarrow \mathrm{~g}^{-1}(x) & =\frac{1}{2} x+\frac{1}{2} \end{aligned}$	M1 A1 B1 B1	One mark for one line, and one mark for second correctly related
	(iii)	$\begin{aligned} & \operatorname{gf}(x)=2 x^{2}-1 \\ & \operatorname{fg}(x)=(2 x-1)^{2} \end{aligned}$	$\begin{array}{ll} \hline \text { B1 } & \\ \text { B1 } & \\ & 2 \end{array}$	
	(iv)	$\begin{aligned} 2 x^{2}-1 & =(2 x-1)^{2} \\ \Rightarrow 0 & =2 x^{2}-4 x+2 \\ \Rightarrow 0 & =2(x-1)^{2} \\ \Rightarrow x & =1 \end{aligned}$	M1 A1 B1 B1	$\begin{aligned} & y=(2 x-1)^{2} \\ & y=(2 x-1)^{2} \end{aligned}$
	(v)	$\begin{aligned} & \mathrm{f}(x+a)=(x+a)^{2} \\ & \mathrm{~g}^{2}(x)=2(2 x-1)-1=4 x-3 \\ & \mathrm{f}(x+a)=\mathrm{g}^{2}(x) \Rightarrow(x+a)^{2}=4 x-3 \\ & \Rightarrow x^{2}+(2 a-4) x+a^{2}+3=0 \end{aligned}$ \Rightarrow There are two roots to this equation if $\begin{aligned} & (2 a-4)^{2}>4\left(a^{2}+3\right) \\ & \text { i.e. } 4 a^{2}-16 a+16>4 a^{2}+12 \\ & \Rightarrow 16 a<4 \Rightarrow a<\frac{1}{4} \end{aligned}$	B1 M1 M1 A1 A1 5	Both fns correct Equating Using $b^{2}-4 a c$ Correct inequality Result

