STEP Mathematics Paper III 1991

11. Taking moments about axis of cylinder we have aT = 2aF

Resolving horizontally $T\cos a + F\cos a = R\sin a$ $\Rightarrow T + F = R\tan a$

$$\Rightarrow F = R \tan \alpha - 2F \Rightarrow \frac{F}{R} = \frac{1}{3} \tan \alpha$$

i.e. $\mu \ge \frac{1}{3} \tan \alpha$ as required.

If Q is now fastened to a particle of mass 3MResolving along and perpendicular to plane at Q $F' = 3Mg \sin a + T \cos 2a$ and $R' = 3Mg \cos a - T \sin 2a$ so $\frac{F'}{R'} = \frac{3Mg \sin a + T \cos 2a}{3Mg \cos a - T \sin 2a}$

Resolving along and perpendicular to plane for cylinder, we have

 $F + T\cos 2a = Mg\sin a$ and $R = Mg\cos a + T\sin 2a$, also T = 2F

so
$$T(1+2\cos 2a) = 2Mg\sin a \Rightarrow T = \frac{2Mg\sin a}{1+2\cos 2a}$$

 $a = \tan^{-1}\frac{1}{2} \Rightarrow \sin a = \frac{1}{\sqrt{5}}, \cos a = \frac{2}{\sqrt{5}}, \sin 2a = \frac{4}{5} \text{ and } \cos 2a = \frac{3}{5}$

so
$$T = \frac{2Mg}{\sqrt{5}\left(1 + \frac{6}{5}\right)} = \frac{10Mg}{11\sqrt{5}}$$
 and so $\frac{F'}{R'} = \frac{\frac{3}{\sqrt{5}} + \frac{30}{55\sqrt{5}}}{\frac{6}{\sqrt{5}} - \frac{40}{55\sqrt{5}}} = \frac{165 + 30}{330 - 40} = \frac{195}{290} = \frac{49}{58}$

so minimum coefficient of friction at Q is $\frac{49}{58}$.