QUESTION 2

$$
q^{n-1} f\left(\frac{p}{q}\right)=0 \Rightarrow \frac{p^{n}}{q}+a_{n-1} p^{n-1}+a_{n-2} p^{n-2} q+a_{n-3} p^{n-3} q^{2}+\ldots+a_{1} p q^{n-2}+a_{0} q^{n-1}=0
$$

Every term except the first is an integer.
For the expression to equal zero $\frac{p^{n}}{q}$ must be an integer.
Since p and q have no common factors greater than $1 q=1$.
It is always possible, for any rational number, to find an equivalent rational number in the form defined for $\frac{p}{q}$.

Therefore if any rational number is a root of a polynomial equation of the given form, we can replace it in the equation by this form and apply the same reasoning as already given to show that the $\frac{p}{q}$ form must be an integer. If this is true then the original rational number must itself have been an integer (albeit in disguised form).

Part (i)

The $n^{\text {th }}$ root of of 2 satisfies the equation $x^{n}-2=0$ for $n \geq 2$.
This equation has integer coefficients and so is of the form of $f(x)$ (given).
By the given reasoning this means that if the solution were a rational number then it would be an integer.

This is clearly impossible.
Therefore the $n^{\text {th }}$ root of of 2 is irrational ($n \geq 2$).

Part (ii)

Suppose $x^{3}-x+1=0$ has a rational solution.
This equation has integer coefficients and so is of the form of $f(x)$ (given).
By the given reasoning this means that if the solution were a rational number then it would be an integer.

Now $x^{3}-x+1=0 \Rightarrow 1=x\left(1-x^{2}\right)$
Clearly $x \notin\{-1,0,1\}$
Further for all x such that $x \in \mathbb{Z}$ and $|x|>1$ we have $x^{2}>1$ so that $\left|x\left(1-x^{2}\right)\right|>1$
Therefore there are no integer solutions to the equation.
Therefore, by our original theorem there are no rational solutions.

Part (iii)

Suppose $x^{n}-5 x+7=0$ for $n \geq 2$ has a rational solution.
This equation has integer coefficients and so is of the form of $f(x)$ (given).

By the given reasoning this means that if the solution were a rational number then it would be an integer.

Now $x^{n}-5 x+7=0 \Rightarrow 7=x\left(5-x^{n-1}\right)$

Since x is an integer and 7 is prime $x=1$ or 7
Clearly $x=1 \Rightarrow x\left(1-x^{n-1}\right)=0 \neq 7$ and $x=7 \Rightarrow 7\left(1-7^{n-1}\right) \neq 5$ for any n
Therefore there is no integer solution and thus no rational solution to the equation.

