1. (a) Simplify fully

$$
\begin{equation*}
\frac{2 x^{2}+9 x-5}{x^{2}+2 x-15} \tag{3}
\end{equation*}
$$

Given that

$$
\ln \left(2 x^{2}+9 x-5\right)=1+\ln \left(x^{2}+2 x-15\right), \quad x \neq-5
$$

(b) find x in terms of e .
2. Express

$$
\frac{x+1}{3 x^{2}-3}-\frac{1}{3 x+1}
$$

as a single fraction in its simplest form.
3. The function f is defined by

$$
\mathrm{f}(x)=1-\frac{2}{(x+4)}+\frac{x-8}{(x-2)(x+4)}, x \in \mathbb{R}, x \neq-4, x \neq 2
$$

(a) Show that $\mathrm{f}(x)=\frac{x-3}{x-2}$

The function g is defined by

$$
g(x)=\frac{\mathrm{e}^{\mathrm{x}}-3}{\mathrm{e}^{\mathrm{x}}-2}, \quad x \in \mathbb{R}, x \neq 1 \ln 2
$$

(b) Differentiate $g(x)$ to show that $g^{\prime}(x)=\frac{\mathrm{e}^{x}}{\left(\mathrm{e}^{x}-2\right)^{2}}$,
(c) Find the exact values of x for which $\mathrm{g}^{\prime}(x)=1$
4.

$$
\mathrm{f}(x)=\frac{2 x+2}{x^{2}-2 x-3}-\frac{x+1}{x-3}
$$

(a) Express $\mathrm{f}(x)$ as a single fraction in its simplest form.
(b) Hence show that $\mathrm{f}^{\prime}(x)=\frac{2}{(x-3)^{2}}$
5. Given that

$$
\frac{2 x^{4}-3 x^{2}+x+1}{\left(x^{2}-1\right)} \equiv\left(a x^{2}+b x+c\right)+\frac{d x+e}{\left(x^{2}-1\right)}
$$

find the values of the constants a, b, c, d and e.
6.

$$
\mathrm{f}(x)=\frac{2 x+3}{x+2}-\frac{9+2 x}{2 x^{2}+3 x-2}, \quad x>\frac{1}{2}
$$

(a) Show that $\mathrm{f}(x)=\frac{4 x-6}{2 x-1}$.
(b) Hence, or otherwise, find $\mathrm{f}^{\prime}(x)$ in its simplest form.

$$
\mathrm{f}(x)=1-\frac{3}{\mathrm{x}+2}+\frac{3}{(x+2)^{2}}, x \neq-2
$$

(a) Show that $\mathrm{f}(x)=\frac{x^{2}+x+1}{(x+2)^{2}}, x \neq-2$.
(b) Show that $x^{2}+x+1>0$ for all values of x.
(c) Show that $\mathrm{f}(x)>0$ for all values of $x, x \neq-2$.
8.

$$
\mathrm{f}(x)=x^{4}-4 x-8
$$

(a) Show that there is a root of $\mathrm{f}(x)=0$ in the interval $[-2,-1]$.
(b) Find the coordinates of the turning point on the graph of $y=\mathrm{f}(x)$.
(c) Given that $\mathrm{f}(x)=(x-2)\left(x^{3}+a x^{2}+b x+c\right)$, find the values of the constants, a, b and c.
(d) Sketch the graph of $y=\mathrm{f}(x)$.
(e) Hence sketch the graph of $y=|\mathrm{f}(x)|$.
9. (a) Simplify $\frac{3 x^{2}-x-2}{x^{2}-1}$
(3)
(b) Hence, or otherwise, express $\frac{3 x^{2}-x-2}{x^{2}-1}-\frac{1}{x(x+1)}$ as a single fraction in its simplest form.
10. Express

$$
\frac{2 x^{2}+3 x}{(2 x+3)(x-2)}-\frac{6}{x^{2}-x-2}
$$

as a single fraction in its simplest form.
11. The function f is defined by

$$
\mathrm{f}: x \rightarrow \frac{5 x+1}{x^{2}+x-2}-\frac{3}{x+2}, \quad x>1
$$

(a) Show that $\mathrm{f}(x)=\frac{2}{x-1}, x>1$.
(b) Find $\mathrm{f}^{-1}(x)$.

The function g is defined by

$$
\mathrm{g}: x \rightarrow x^{2}+5, \quad x \in \mathbb{R}
$$

(c) Solve $\operatorname{fg}(x)=\frac{1}{4}$.
12.

$$
\mathrm{f}(x)=\frac{x^{2}-x-6}{x^{2}-3 x}, \quad x \neq 0, \quad x \neq 3
$$

(a) Express $\mathrm{f}(x)$ in its simplest form.
(b) Hence, or otherwise, find the exact solutions of $\mathrm{f}(x)=x+1$.
13.

$$
\mathrm{f}(x)=\frac{2 x+5}{x+3}-\frac{1}{(x+3)(x+2)}, \quad x>-2 .
$$

(a) Express $\mathrm{f}(x)$ as a single fraction in its simplest form.
(b) Hence show that $\mathrm{f}(x)=2-\frac{1}{x+2}, \quad x>-2$.

The curve $y=\frac{1}{x}, x>0$, is mapped onto the curve $y=\mathrm{f}(x)$, using three successive transformations T_{1}, T_{2} and T_{3}, where T_{1} and T_{3} are translations.
(c) Describe fully T_{1}, T_{2} and T_{3}.
14. Express as a single fraction in its simplest form

$$
\frac{x^{2}-8 x+15}{x^{2}-9} \times \frac{2 x^{2}+6 x}{(x-5)^{2}}
$$

15. The function f is given by

$$
\mathrm{f}: x \mapsto 2+\frac{3}{x+2}, \quad x \in \mathbb{R}, \quad x \neq-2 .
$$

(a) Express $2+\frac{3}{x+2}$ as a single fraction.
(b) Find an expression for $\mathrm{f}^{-1}(x)$.
(c) Write down the domain of f^{-1}.
16. The function f is even and has domain . For $x \geq 0, \mathrm{f}(x)=x^{2}-4 a x$, where a is a positive constant.
(a) In the space below, sketch the curve with equation $y=\mathrm{f}(x)$, showing the coordinates of all the points at which the curve meets the axes.
(b) Find, in terms of a, the value of $\mathrm{f}(2 a)$ and the value of $\mathrm{f}(-2 a)$.
(2)

Given that $a=3$,
(c) use algebra to find the values of x for which $\mathrm{f}(x)=45$.
17. (a) Express as a fraction in its simplest form

$$
\begin{equation*}
\frac{2}{x-3}+\frac{13}{x^{2}+4 x-21} \tag{3}
\end{equation*}
$$

(b) Hence solve

$$
\frac{2}{x-3}+\frac{13}{x^{2}+4 x-21}=1
$$

18. (a) Simplify $\frac{x^{2}+4 x+3}{x^{2}+x}$.
(b) Find the value of x for which $\log _{2}\left(x^{2}+4 x+3\right)-\log _{2}\left(x^{2}+x\right)=4$.
(Total 6 marks)
19. Express $\frac{x}{(x+1)(x+3)}+\frac{x+12}{x^{2}-9}$ as a single fraction in its simplest form.
(Total 6 marks)
20. Express

$$
\frac{3 x^{2}}{\left(2 x^{2}+7 x+6\right)} \times \frac{7(3+2 x)}{3 x^{5}}
$$

as a single fraction in its simplest form.

