1. (a) Given that a > 0, sketch the curve with polar equation

$$r = a \sin 3\theta, \ 0 \le \theta \le \pi.$$
 (4 marks)

(b) State the maximum distance of a point on this curve from the pole.

(1 mark)

2. Find the complete solution set of the inequality

$$|x^2+2| < |x-4|$$
. (6 marks)

- 3. Given that $f(x) = 2e^x x^2 3$,
 - (a) show that there is a root of the equation f(x) = 0 between 0 and 1. (2 marks)
 - (b) Taking 0.5 as a first approximation, use the Newton-Raphson process once to obtain a second approximation to this root, correct to 3 significant figures. (4 marks)
- 4. Given that w = 1 + i and $z = 1 i\sqrt{3}$,
 - (a) find arg w and arg z.

(3 marks)

- (b) Express wz in the form $r(\cos \theta + i \sin \theta)$, where r > 0 and $-\pi \le \theta < \pi$, giving the value of r in surd form and θ in terms of π . (4 marks)
- (c) Hence or otherwise state the modulus and argument of $\frac{1}{wz}$. (2 marks)
- 5. (a) Show that

$$\sum_{r=1}^{n} (3r-1)(3r+2) = n(3n^2+6n+1).$$
 (5 marks)

(b) Using the result in (a), or otherwise, evaluate

$$\sum_{r=10}^{50} (9r^2 + 3r). \tag{4 marks}$$

6. (a) Solve the differential equation

$$2x\frac{\mathrm{d}y}{\mathrm{d}x}-y=x,$$

given that $x \neq 0$ and that y = -2 when x = 1.

(8 marks)

(b) Hence find the value of y when x = 4.

(2 marks)

PURE MATHEMATICS 4 (A) TEST PAPER 1 Page 2

7. The diagram shows the curves with polar equations $r = 2\theta$ and $r = 5 \cos \theta$, for $0 \le \theta \le \frac{\pi}{2}$.

- (a) Calculate the polar coordinates of
 - (i) the points A and B,

(3 marks)

- (ii) the point C, where the tangent to $r = 5 \cos \theta$ is parallel to the initial line. (2 marks)
- (b) Show that at the point D, where the tangent to $r = 2\theta$ is perpendicular to the initial line,

$$\tan \theta = \frac{1}{\theta}.$$
 (4 marks)

(c) Find, in terms of π , the area of the shaded region.

(5 marks)

8. (a) Find the general solution of the differential equation

$$2 \frac{d^2 y}{dx^2} - 3 \frac{dy}{dx} - 2y = 25 \cos x.$$
 (8 marks)

- (b) Find the particular solution of the above equation for which y = 1 and $\frac{dy}{dx} = -1$ when x = 0. (5 marks)
- (c) Hence find, to 2 significant figures, the value of y when $x = \pi$.

(3 marks)