STEP III 1999 Q2

i) We have $f^{\prime}(x)=\left(1+x^{2}\right) e^{x}+2 x e^{x}$ by the product rule, which simplifies to $f^{\prime}(x)=(1+x)^{2} e^{x}$ $(1+x)^{2} \geq 0$ as it is square and $e^{x}>0$ so their product is ≥ 0, as required.

Sketch:

There is an inflection point at $x=-1$, where $f^{\prime}(x)=0$ and the y-intercept is 1 .
The second part is obvious from the graph, lines $y=k$ will intersect the graph once for $k>0$ and not at all for $\mathrm{k} \leq 0$, as the graph has an asymptote $\mathrm{y}=0$.
ii) Let $g(x)=e^{x}-1-k \tan ^{-1}(x)$

Then $g^{\prime}(x)=e^{x}-\frac{k}{1+x^{2}}$ so for turning points we require $0=e^{x}-\frac{k}{1+x^{2}} \Rightarrow\left(1+x^{2}\right) e^{x}=k$
which has exactly 1 solution for $\mathrm{k}>0$ (from the first part of the question). So $\mathrm{g}(\mathrm{x})$ has exactly one turning point.
We observe that $x=0$ is a root for all values of k. Therefore the turning point must occur for $g(x) \leq 0$. We observe that $\mathrm{k}<1$ means that $\mathrm{x}<0$ (this can be seen from the sketch in part i). So the turning point occurs for $-\infty<x<0$. It is obvious that the turning point must be a minimum (consider what happens for large positive x, there is no maximum of $g(x)$). We consider what happens to $\mathrm{g}(\mathrm{x})$ for large negative x .
$\lim _{x \rightarrow-\infty} e^{x}-1-k \tan ^{-1}(x)=-1+k \frac{\pi}{2}$
Therefore there is an asymptote at $g(x)=A=-1+k \frac{\pi}{2}$

When this asymptote is below the x -axis (or the $\mathrm{x}=$ axis itself), the only root is at $\mathrm{x}=0$ Sketch:

When this asymptote is above the x-axis, there must be another root as the function must pass below the x-axis to pass through $(0,0)$.
Sketch:

So for $0<k \leq \frac{2}{\pi}, A=-1+k \frac{\pi}{2} \leq 0$ so there is 1 real root. For $\frac{2}{\pi}<k<1, A=-1+k \frac{\pi}{2}>0$ so there are 2 real roots.

