12. . Systemwill be in static equilibriumfor all positions of the bead if there is no change in P.E. when moved from one position to another.
Let H be the highest point of the curve and consider when bead is at B Taking a horizontal plane through the ring as.
zero level for P.E. we have
P.E. of system when bead is at H is $\mathrm{mgh}-\mathrm{mg}(\mathrm{x}-\mathrm{h})$ where x is

Taking horizontal planethrough O as zero level for P.E. we have P.E. of system when bead is at H is $\mathrm{mgh}-\mathrm{mg}(\mathrm{x}-\mathrm{h})$ where x is the length of the string.
P.E. when bead is at B is $m g r \cos \theta-m g(x-r)$

so there is no change in P.E if $m g h-m g(x-h)=m g r \cos \theta-m g(x-r)$
$\Rightarrow \mathrm{h}+\mathrm{h}=\mathrm{r} \cos \theta_{-}+\mathrm{r}$ or $\mathrm{r}=\frac{2 \mathrm{~h}}{1+\cos \theta}$ which is the equation of the curve.
shortest distance of curve fromring is obviously when $1+\cos \theta$ is a maximum i.e $\cos \theta=1$ so minimumvalue of r is h, i.e. $h=d$ and equation is $r(1+\cos \theta)=2 d$
$\cos \theta=\frac{2 \mathrm{~d}}{\mathrm{r}}-1 \Rightarrow-\sin \theta \dot{\theta}=-\frac{2 d}{\mathrm{r}^{2}} \mathrm{r}$ and $\sin \theta=\sqrt{1-\left(\frac{2 d}{r}-1\right)^{2}}=\frac{\sqrt{4 d r-4 d^{2}}}{\mathrm{r}}$
so $\dot{\theta}=\frac{2 \mathrm{~d}}{\mathrm{r}^{2}} \times \frac{\mathrm{rr}}{\sqrt{4 d r-4 d^{2}}}=\frac{\mathrm{dr}}{\mathrm{r} \sqrt{d r-\mathrm{d}^{2}}} \Rightarrow \dot{\theta}^{2}=\frac{\mathrm{d}^{2} r^{2}}{\mathrm{r}^{2}\left(\mathrm{dr}-\mathrm{d}^{2}\right)}=\frac{\mathrm{d} r^{2}}{\mathrm{r}^{2}(\mathrm{r}-\mathrm{d})}$
P.E. constant \Rightarrow K.E. constant
speed of P is r
at B, bead has a speed of $r \dot{\theta}$ tangentially and $-r^{\prime}$ radially so by the constancy of K.E.
$(r \dot{\theta})^{2}+2 \dot{r}^{2}=v^{2} \Rightarrow\left(\frac{r^{2} d}{r^{2}(r-d)}+2\right) \dot{r}^{2}=v^{2} \Rightarrow\left(\frac{2 r-d}{r-d}\right) \dot{r}^{2}=v^{2} \Rightarrow \dot{r}^{2}=\left(\frac{r-d}{2 r-d}\right) v^{2}$
so $\dot{\theta}^{2}=\frac{d}{r^{2}(r-d)} \times\left(\frac{r-d}{2 r-d}\right) v^{2}=\left(\frac{d}{r^{2}(2 r-d)}\right) v^{2}$ and $(r \dot{\theta})^{2}=\left(\frac{d}{2 r-d}\right) v^{2}$
so finally the speed of the bead is $\left((r \dot{\theta})^{2}+r^{2}\right)^{\frac{1}{2}}=\left(\left(\frac{d}{2 r-d}\right)+\left(\frac{r-d}{2 r-d}\right)\right)^{\frac{1}{2}} v=\left(\frac{r}{2 r-d}\right)^{\frac{1}{2}}$ v as required

