(Sketch omitted.)
If the coordinates of $P$ are $(a, b)$, then by symmetry, the coordinates of $Q$ are $(-a,-b)$.
$C_{1}$ is given by:

$$
x y=1
$$

Differentiating both sides:

$$
\begin{gathered}
\frac{d}{d x}(x y)=0 \\
x \frac{d y}{d x}+y=0 \\
\frac{d y}{d x}=-\frac{y}{x}
\end{gathered}
$$

Hence, the equation of the tangent to $C_{1}$ at $P$ is:

$$
\begin{equation*}
y=-\frac{b}{a}(x-a)+b=-\frac{b}{a} x+2 b \tag{1}
\end{equation*}
$$

$C_{2}$ is given by:

$$
x^{2}-y^{2}=2
$$

Differentiating both sides:

$$
\begin{gathered}
\frac{d}{d x}\left(x^{2}-y^{2}\right)=0 \\
2 x-2 y \frac{d y}{d x}=0 \\
\frac{d y}{d x}=\frac{x}{y}
\end{gathered}
$$

Hence, the equation of the tangent to $C_{2}$ at $Q$ is:

$$
\begin{equation*}
y=\frac{a}{b}(x+a)-b \tag{2}
\end{equation*}
$$

$M$ is the intersection of the two tangents, hence, at $M$,

$$
\frac{a}{b}(x+a)-b=-\frac{b}{a} x+2 b
$$

Let $x=-b$. Then:

$$
\frac{a}{b}(-b+a)-b=-\frac{b}{a}(-b)+2 b
$$

$$
-a+\frac{a^{2}}{b}-b=\frac{b^{2}}{a}+2 b
$$

$a b=1$ since $(a, b)$ is on $C_{1}$, hence, $b=a^{-1}$.
The LHS:

$$
\begin{gathered}
-a+\frac{a^{2}}{b}-b=-a+\frac{a^{2}}{a^{-1}}-a^{-1}=a^{3}-a-a^{-1} \\
\text { LHS }=a\left(a^{2}-a^{-2}-1\right)
\end{gathered}
$$

The RHS:

$$
\begin{gathered}
\frac{b^{2}}{a}+2 b=\frac{a^{-2}}{a}+2 a^{-1}=a^{-3}+2 a^{-1}=a^{-3}-a+a+2 a^{-1} \\
\text { RHS }=a^{-1}\left(a^{-2}-a^{2}+2\right)+a \\
a^{2}-b^{2}=2 \text { since }(a, b) \text { is on } C_{2} \text {, hence, } a^{2}+a^{-2}=2 \text {. Thus, }
\end{gathered}
$$

$$
\begin{gathered}
\text { LHS }=a\left(a^{2}-a^{-2}-1\right)=a(2-1)=a \\
\text { RHS }=a^{-1}\left(a^{-2}-a^{2}+2\right)+a=a^{-1}(-2+2)+a=a
\end{gathered}
$$

LHS $=$ RHS $=a$, so $(-b, a)$ are the coordinates of M. By symmetry along $y=-x$, N must have the coordinates $(b,-a)$.

Thus,

$$
\begin{aligned}
P & =(+a,+b) \\
M & =(-b,+a) \\
Q & =(-a,-b) \\
N & =(+b,-a)
\end{aligned}
$$

We note that M is the image of P under a $90^{\circ}$ counterclockwise rotation about the origin. Likewise, Q is the image of $\mathrm{M}, \mathrm{N}$ is the image of Q and P is the image of N under the same rotation. Therefore, PMQN forms a square centred on the origin.

