QUESTION 2

If $p(x)$ and $q(x)$ are polynomials of degree m and n respectively then $p(q(x))$ is a polynomial of degree $m \times n$.

Part (i)

Let $p(x)$ be a polynomial of degree $n \in \mathbb{N}$.
Then $p(p(p(x)))$ is a polynomial of degree n^{3}.
Further $p(p(p(x)))-3 p(x)$ will also be a polynomial of degree n^{3}.
Since this is equal to a polynomial of degree 1 then we must have that $n^{3}=1 \Rightarrow n=1$.

Therefore let $p(x)=a x+b \Rightarrow p(p(p(x)))=a(a(a x+b)+b)+b$
We have $a(a(a x+b)+b)+b-3(a x+b)=-2 x$ for all x.

$$
\begin{aligned}
& \Rightarrow\left(a^{3}-3 a\right) x+\left(a^{2} b+a b-2 b\right)=-2 x \\
& \Rightarrow a^{3}-3 a=-2 \Rightarrow a^{3}-3 a+2=0 \Rightarrow(a-1)^{2}(a+2)=0
\end{aligned}
$$

So that $a=1$ or -2 .
We also have $a^{2} b+a b=2 b=0$
Now $a=1$ and $a=-2$ both allow b to have any value.
Therefore only polynomials that can satisfy this equation are $p(x)=x+b$ and $p(x)=-2 x+b$ for an arbitrary constant b.

Part (ii)

Clearly the most general polynomial that can satisfy this equation has degree 2.

Let $p(x)=a x^{2}+b x+c$ for $a, b, c \in \mathbb{R}$
$\operatorname{Now}[p(x)]^{2}=a^{2} x^{4}+2 a b x^{3}+\left(2 a c+b^{2}\right) x^{2}+2 b c x+c^{2}$
Further $p(p(x))=a\left(a x^{2}+b x+c\right)^{2}+b\left(a x^{2}+b x+c\right)+c$

$$
\begin{aligned}
& =\left[a^{3} x^{4}+2 a^{2} b x^{3}+a\left(2 a c+b^{2}\right) x^{2}+2 a b c x+a c^{2}\right]+\left[a b x^{2}+b^{2} x+b c\right]+c \\
& =a^{3} x^{4}+2 a^{2} b x^{3}+\left[a\left(2 a c+b^{2}\right)+a b\right] x^{2}+[b(2 a c+b)] x+a c^{2}+b c+c
\end{aligned}
$$

Hence $2 p(p(x))+3[p(x)]^{2}-4 p(x)$

$$
=\left[a^{2}(2 a+3)\right] x^{4}+2 a b(2 a+3) x^{3}+\ldots+\left[2\left(a c^{2}+b c+c\right)+3 c^{2}-4 c\right]
$$

Therefore $a^{2}(2 a+3)=1 \Rightarrow 2 a^{3}+3 a^{2}-1=0 \Rightarrow(a+1)^{2}(2 a-1)=0$
So that $a=-1$ or $\frac{1}{2}$

Now looking at the coefficient of x^{3}, both these values imply $b=0$.
Looking at the constant term, $a=-1 \Rightarrow c=0$ or $2, a=\frac{1}{2} \Rightarrow c=0$ or $\frac{1}{2}$
Now a solution with $c=0$ cannot work with $b=0$ since both $p(p(x))$ and $[p(x)]^{2}$ would both be a constant times x^{4} and we would have a term in x^{2} from the $-4 p(x)$ that would not disappear.

Therefore we have 2 possible solutions only :-

$$
p(x)=-x^{2}+2 \text { and } p(x)=\frac{x^{2}}{2}+\frac{1}{2}
$$

