Mark Scheme (Pre-Standardisation)

January 2012

GCE Core Mathematics C1 6663

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http://www.edexcel.com/Aboutus/contact-us/

January 2012
Publications Code
All the material in this publication is copyright
© Pearson Education Ltd 2012

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod - benefit of doubt
- ft - follow through
- the symbol $£$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \square The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected. If you are using the annotation facility on ePEN, indicate this action by 'MR' in the body of the script.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.
8. Marks for each question are scored by clicking in the marking grids that appear below each student response on ePEN. The maximum mark allocation for each question/part question(item) is set out in the marking grid and you should allocate a score of ' 0 ' or ' 1 ' for each mark, or "trait", as shown:

	0	1
aM		\bullet
aA	\bullet	
bM1		\bullet
bA1	\bullet	
bB	\bullet	
bM2		\bullet
bA2		\bullet

9. Be careful when scoring a response that is either all correct or all incorrect. It is very easy to click down the ' 0 ' column when it was meant to be ' 1 ' and all correct.

General Principals for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation
$\left(x^{2}+b x+c\right)=(x+p)(x+q)$, where $|p q|=|c|$, leading to $\mathrm{x}=\ldots$
$\left(a x^{2}+b x+c\right)=(m x+p)(n x+q)$, where $|p q|=|c|$ and $|m n|=|a|$, leading to $\mathrm{x}=\ldots$
2. Formula

Attempt to use correct formula (with values for a, b and c).
3. Completing the square

Solving $x^{2}+b x+c=0: \quad(x \pm p)^{2} \pm q \pm c, \quad p \neq 0, q \neq 0, \quad$ leading to $\mathrm{x}=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $\left(x^{n} \rightarrow x^{n-1}\right)$

2. Integration

Power of at least one term increased by 1. $\left(x^{n} \rightarrow x^{n+1}\right)$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.
Normal marking procedure is as follows:
Method mark for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.
Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these may not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does not cover this, please contact your team leader for advice.

J anuary 2012

C1 6663
Mark Scheme

Question	Scheme	Marks
1. (a)	$4 x^{3}+3 x^{-\frac{1}{2}}$	M1A1A1 (3)
(b)	$\frac{x^{5}}{5}+4 x^{\frac{3}{2}}+C$	M1A1A1 (3) 6 marks
	Notes	
(a) (b)	M1 for $x^{n} \rightarrow x^{n-1}$ $1^{\text {st }}$ A1 for $4 x^{3}$ or $3 x^{-\frac{1}{2}} \quad$ (ignore $\mathrm{a}+c$ for this mark) $2^{\text {nd }}$ A1 for both $4 x^{3}$ and $3 x^{-\frac{1}{2}}$ and no $+c$ M1 for $x^{n} \rightarrow x^{n+1}$ $1^{\text {st }} \mathrm{A} 1$ for $\frac{x^{5}}{5}$ or $\frac{6 x^{\frac{3}{2}}}{\frac{3}{2}}$ (or better) $2^{\text {nd }}$ A1 for fully correct and simplified answer with $+C$	

Question	Scheme		
6. (a)	$m=\frac{2}{3}$	B1	(1)
(b)	B: $(0,4)$	B1	
	Gradient: $\frac{-1}{m}=-\frac{3}{2}$	M1	
	$y-4=-\frac{3 x}{2} \quad$ or equiv. e.g. $\left(y=-\frac{3 x}{2}+4, \quad 3 x+2 y-8=0\right)$	A1	(3)
(c)	A: $(-6,0)$	B1	
	$C: \frac{3 x}{2}=4 \quad \Rightarrow \quad x=\frac{8}{3}$	B1ft	
	Area: Using $\frac{1}{2}\left(x_{C}-x_{A}\right) y_{B}$	M1	
	$=\frac{1}{2}\left(\frac{8}{3}+6\right) 4=\frac{52}{3}\left(=17 \frac{1}{3}\right)$		(4)
ALT	$B C=\frac{4}{6} \sqrt{52}$ (from similar triangles) (or possibly using C)	$2^{\text {nd }}$ B	
	Area: Using $\frac{1}{2}(A B \times A C)$ N.B. $A B=\sqrt{6^{2}+4^{2}}=\sqrt{52}$	M1	
	$=\frac{1}{2} \times \sqrt{52} \times\left(\frac{2}{3} \sqrt{52}\right)=\frac{52}{3}\left(=17 \frac{1}{3}\right)$	A1	
		8 marks	
Notes			
(a)	B1 for $\frac{2}{3}$ seen		
(b)	B1 for coordinates of B. Accept 4 marked on y-axis M1 for use of perpendicular gradient rule. Follow through their value for m A1 for a correct equation (any form, need not be simplified)		
(c)	$1^{\text {st }}$ B1 for the coordinates of A. Accept -6 marked on x-axis $2^{\text {nd }} \mathrm{B} 1 \mathrm{ft}$ for the coordinates of C. Accept $x=\frac{8}{3}$ marked on x-axis. Follow through from l_{2}		
	A1 for $\frac{52}{3}$ or exact equivalent seen		
ALT	$2^{\text {nd }} \mathrm{B} 1 \mathrm{ft}$ If they use this approach award this mark for C (if seen)		

Question	Scheme	Marks
7.	$\begin{aligned} & {[\mathrm{f}(x)=] \frac{3 x^{3}}{3}-\frac{3 x^{2}}{2}+5 x[+c] \quad \text { or }\left\{x^{3}-\frac{3}{2} x^{2}+5 x(+c)\right\}} \\ & 10=8-6+10+c \\ & \mathrm{f}(1)=1-\frac{3}{2}+5 \quad-2=-2=\frac{5}{2} \quad \text { (o.e.) } \end{aligned}$	M1A1 M1 A1 A1ft (5) 5 marks
	Notes	
	$\begin{aligned} & 1^{\text {st }} \text { M1 for attempt to integrate } x^{n} \rightarrow x^{n+1} \\ & 1^{\text {st }} \mathrm{A} 1 \text { all correct, possibly unsimplified. Ignore }+c \text { here. } \\ & 2^{\text {nd }} \text { M1 for using } x=2 \text { and } \mathrm{f}(2)=10 \text { to form a linear equation in } c \\ & 2^{\text {nd }} \mathrm{A} 1 \quad \text { for } c=-2 \\ & 3^{\text {rd }} \text { A1ft for } \frac{9}{2}+c \text { Follow through their } c \end{aligned}$	

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code xxxxxxxx June 2011

Llywodraeth Cynulliad Cymru
Welsh Assembly Government
For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Rewarding Learning

