You are Here: Home

# Cauchy's Estimate

Announcements Posted on
Fancy a fiver? Fill in our quick survey and we’ll send you a £5 Amazon voucher 03-05-2016
Talking about ISA/EMPA specifics is against our guidelines - read more here 28-04-2016
1. I'm having trouble pinning down what should be a straightforward question.

Q: Let R>0 and f be an entire function such that for . Show that f is a polynomial of degree at most n.

I have a hint that says it would be helpful to apply Cauchy's estimate. So I fix R>0 and choose S>R. Then f is analytic on B(0,S) and for |z|>R. Then, applying Cauchy's estimate for any z0 in the annulus gives . Which implies f is poly of max degree n (as n'th derivative is constant).

But what about all those points inside B(0,R)? How do I deal with them?

2. Use Cauchy's integral formula to establish a bound on the function inside the disc, by integrating around a contour sufficiently large. (I think that's how it goes. If not I'll check my work and see how I went about it.)
3. (Original post by Zhen Lin)
Use Cauchy's integral formula to establish a bound on the function inside the disc, by integrating around a contour sufficiently large. (I think that's how it goes. If not I'll check my work and see how I went about it.)
I'm not entirely clear what you're getting at. Could we let, say, , and the conclude from Cauchy's integral formula (with for suitably large S>R) that ? Which gives us as an upper bound for the integral inside the disc. Is that enough to conclude that f itself is bounded inside the disc? Is that what you were suggesting?
4. Well, this is what I had in mind. Let , where and S is chosen so that for all t. Then , so , which you can now bound above by . So for , taking allows us to see that for as well. (Actually, this gives the result for all z, since a holomorphic function constant on some open subset of a connected domain is globally constant.)
5. Hmm, looks a bit heavy-handed but I can't see anything else so perhaps that's the best to be done. Thanks again, Zhen.

## Register

Thanks for posting! You just need to create an account in order to submit the post
1. this can't be left blank
2. this can't be left blank
3. this can't be left blank

6 characters or longer with both numbers and letters is safer

4. this can't be left empty
1. Oops, you need to agree to our Ts&Cs to register

Updated: May 27, 2010
TSR Support Team

We have a brilliant team of more than 60 Support Team members looking after discussions on The Student Room, helping to make it a fun, safe and useful place to hang out.

This forum is supported by:
Today on TSR

### iGCSE English Language

Here's the unofficial markscheme

Poll
Useful resources

### Maths Forum posting guidelines

Not sure where to post? Read here first

### How to use LaTex

Writing equations the easy way

### Study habits of A* students

Top tips from students who have already aced their exams