The Student Room Group

Convexity in n-dimensions

Let ΩRn\Omega \subset \mathbb{R}^n be open and convex. A function f:ΩRf: \Omega \to \mathbb{R} is called convex if:


f(λx+(1λ)y)λf(x)+(1λ)f(y)x,yΩ,λ(0,1)f(\lambda x + (1-\lambda)y) \leq \lambda f(x) + (1-\lambda)f(y) \quad \forall x, y \in \Omega, \: \lambda \in (0,1)


Suppose fC1(Ω) f \in C^1(\Omega). Show that f is convex if and only if:


f(x)f(z)+f(z),xzx,zΩf(x) \geq f(z) + \langle \nabla f(z), x-z \rangle \quad \forall x,z \in \Omega


The forward argument is fairly simple; use the chain rule in n-dimensions to differentiate the entire first equation with respect to \lambda, and set \lambda equal to zero to give the second equation. I am finding the reverse argument harder... any helpful tips?
Reply 1
By assumption, we have:
f(x)f(z)+f(z)(zx) x,zΩf(x) \ge f(z) + \nabla f(z) \cdot (z-x)\ \forall x,z \in \Omega
f(y)f(z)+f(z)(zy) y,zΩf(y) \ge f(z) + \nabla f(z) \cdot (z-y)\ \forall y,z \in \Omega

Take λ\lambda times the top equation and add it to (1λ)(1- \lambda ) times the bottom equation, and rearrange... then find a suitable value of zz in terms of xx and yy.
Reply 2
nuodai
By assumption, we have:
f(x)f(z)+f(z)(zx) x,zΩf(x) \ge f(z) + \nabla f(z) \cdot (z-x)\ \forall x,z \in \Omega
f(y)f(z)+f(z)(zy) y,zΩf(y) \ge f(z) + \nabla f(z) \cdot (z-y)\ \forall y,z \in \Omega

Take λ\lambda times the top equation and add it to (1λ)(1- \lambda ) times the bottom equation, and rearrange... then find a suitable value of zz in terms of xx and yy.


Lovely, thanks a lot :biggrin:.

Latest