Results are out! Find what you need...fast. Get quick advice or join the chat
Hey there Sign in to join this conversationNew here? Join for free

c2h6n and c3h5br2

Announcements Posted on
Got a question about Student Finance? Ask the experts this week on TSR! 15-09-2014
    • Thread Starter
    • 0 followers
    Offline

    ReputationRep:
    is the reason why they cant exist is the fact they form unstable compounds which are negatively charged?
    • 38 followers
    Offline

    ReputationRep:
    not sure of your question. what are c2h6n and c3h5br2 ?

    can you give them names as the molecular formulae you have given are ambiguous?
    • 1 follower
    Offline

    ReputationRep:
    im not sure how either would exist, structural forumla pls?
    • 2 followers
    Offline

    ReputationRep:
    C2H6N (I'm going to assume as NITROGEN) - Cannot exist, as there would be too many hydrogens if all the electrons formed a covalent bond with another atom. You would think that you can make a atom like [CH3-CH=NH2](1+) where 1+ is the overall charge on the molecule (One of the hydrogens form a dative covalent bond with the lone pair on the nitrogen), but it is more likely that the C=N double bond will break, as it is more unstable. Also, in order for a ion to be made, high pressures will be needed, so (assuming you're in room temperature and pressure) it won't exist. Woo. essay, haha.

    C3H5Br2 - Is unlikely to exist, because a carbocation (a positive carbon in a organic molecule) would exist. So it'll probably exist for a fraction of a second before a nucleophile (electron pair donator) will attack it and for a dative covalent bond with it, changing the structure.

    I think it's right, but I'm only in A2 Chemistry, so hope this helped! =]
    • 6 followers
    Offline

    ReputationRep:
    These molecules would be charged but you haven't specified what the charges are.

    C2H6N+ wouldn't exist as you'd never be able to remove H- from dimethylamine. You could remove H+ though with a very strong base like butyl lithium. So C2H6N- (negative charge on nitrogen) can exist. You can even buy this from sigma aldrich as as the lithium salt - LiN(CH3)2. This molecule will be very reactive though as it really really wants to pick up a proton so it will exist as long as there isn't any other molecule around with even a slightly acidic proton.

    C3H5Br2+ is too unstable. Maybe as a very short lived SN1 intermediate but you'd never isolate it. As for C3H5Br2- (assuming it's CH3C(-)HCHBr2), the free electron pair on carbon would spontaneously kick into the adjacent C-C bond to eliminate a bromide and give CH3CH=CHBr.

Reply

Submit reply

Register

Thanks for posting! You just need to create an account in order to submit the post
  1. this can't be left blank
    that username has been taken, please choose another Forgotten your password?
  2. this can't be left blank
    this email is already registered. Forgotten your password?
  3. this can't be left blank

    6 characters or longer with both numbers and letters is safer

  4. this can't be left empty
    your full birthday is required
  1. By joining you agree to our Ts and Cs, privacy policy and site rules

  2. Slide to join now Processing…

Updated: October 19, 2010
New on TSR

A-level secrets uncovered

Learn from the experience of last year's A-level students

Article updates
Reputation gems:
You get these gems as you gain rep from other members for making good contributions and giving helpful advice.