You are Here: Home

# Division theorem

Announcements Posted on
Find the answers: Edexcel GCSE maths unofficial mark scheme 05-05-2016
1. There are a few questions I'm having about some proofs in number theory:

• I'm trying to prove the division theorem, that there exist unique integers q and r such that , where . The proof was broken up into cases where a > 0, a = 0 and a < 0, all with b > 0. I have to complete the proof with b < 0. I know this involves saying that -b > 0 and just replacing b with -b in the other cases, but do I have to do three more cases or just one?
• I'm trying to prove that the r and q are unique. Say there are two of each, r and r', and q and q'. Then a = bq + r = bq' + r', so b(q - q')=r - r'. I have in my lecture notes that the LHS is a multiplier of b (which is obvious) but also that -b < r - r' < b (I don't understand how this was established).
2. For the first one, you should be able to get away with 1 case. (Replace a with -a and b with -b and then use the result already proved).

For your second question. Since r < b, and r' >=0, r -r' <b. Similarly for the other inequality.

## Register

Thanks for posting! You just need to create an account in order to submit the post
1. this can't be left blank
2. this can't be left blank
3. this can't be left blank

6 characters or longer with both numbers and letters is safer

4. this can't be left empty
1. Oops, you need to agree to our Ts&Cs to register

Updated: April 15, 2011
TSR Support Team

We have a brilliant team of more than 60 Support Team members looking after discussions on The Student Room, helping to make it a fun, safe and useful place to hang out.

This forum is supported by:
Today on TSR

Check the unofficial mark scheme

Poll
Useful resources

### Maths Forum posting guidelines

Not sure where to post? Read here first

### How to use LaTex

Writing equations the easy way

### Study habits of A* students

Top tips from students who have already aced their exams