It has no practical application, why can't people who work (professionally I mean) in pure maths do something that actually benefits people.
Yes, I know that it helps to explain things like science which have practical application, but we don't need pure maths to help with that once the problem (or whatever it is) is found because people can work out the maths needed without worrying about the silly things like mathematical proof.
Just to clarify my stance, I think if something has realworld application, I no longer consider it to be 'pure maths'. So please don't say things like 'it is useful for solving problems in physics to do with black holes (or whatever)' because then it would no longer be pure maths.
Other than for 'fun', what is the point in pure maths?
EDIT:
Okay, to clarify further. I think 'pure maths' is when people try to prove things that, for all intents and purposes, are selfevidently true. It is impossible to prove something without making assumptions, so mathematical proof is no more valid than scientific proof just because it makes different assumptions. Also, when people work on problems with numbers or algebra (or whatever) that they can't clearly see an application for (an application being something that would benefit other people). Just because applications are often found later, that doesn't justify finding out the methods used earlier on, because those same methods could have been discovered when the reallife problem arose.
What is the point in pure maths?
Announcements  Posted on 


View Poll Results: What is the point in pure maths?


Can you give me an example of some "pure" maths that has no real world application so that I can respond to your survey

So you're asking whether pure maths has a 'real world' application, defining pure maths to be maths that has no 'real world' application?
Also, what TenOfThem said. 
whats the point in life?

A sly way for teachers to mentally torture their students

First of all it's "of" not "in", and as above, pretty much all maths can be applied, just maybe some can only be applied at very high levels.
Also just to illustrate, 1+1=2 in this context has no real life application and is therefore "pure" as if you think about it, it doesn't really mean anything  1 what? 2 what? But when you apply this to counting it is no longer pure. So iy is clear from this rather mundane that pure maths is only pure if we do not give it application or have thus far not found any application. This is not the same as saying there exists no application. 
(Original post by When you see it...)
It has no practical application, why can't people who work (professionally I mean) in pure maths do something that actually benefits people.
Yes, I know that it helps to explain things like science which have practical application, but we don't need pure maths to help with that once the problem (or whatever it is) is found because people can work out the maths needed without worrying about the silly things like mathematical proof.
Just to clarify my stance, I think if something has realworld application, I no longer consider it to be 'pure maths'. So please don't say things like 'it is useful for solving problems in physics to do with black holes (or whatever)' because then it would no longer be pure maths.
Other than for 'fun', what is the point in pure maths?
I guess my conclusion is that if we take your definition, then there's no such thing as pure maths! 
Pure maths is learning the methods. There may or may not be applications and you may or may not need it in life.
For example dot producting vectors, I thought, what is that useful for, and my teacher asked if I were familiar with Work being the product of Force and distance. The application of this method comes in at Mechanics 2. So you may not thing you need it, trying to understand the method helps but pure maths is just that, pure and methodical. 
"It's extraordinary, it's always the children who say 'Sir, sir, what's the point of geometry, or what's the point of Latin,' that end up having no job, being alcoholic, and they don't notice that the ones who actually find knowledge for its own sake, and pleasure in information, in history, in the world and nature around us, actually getting on and DOING things with their ****ing lives... it's an odd thing."  Stephen Fry.
As for proofs, in maths it's just not good enough to just say, "it works", we have to have proofs  otherwise how can you be certain that whatever theorem, equation etc works? 
(Original post by edd360)
whats the point in life? 
It's ****ing enjoyable

Pure maths, or understanding the underlying structurse in mathematics, is as close as we'll ever come to understanding the underlying structure of the universe

(Original post by TheGrinningSkull)
Pure maths is learning the methods. There may or may not be applications and you may or may not need it in life.
For example dot producting vectors, I thought, what is that useful for, and my teacher asked if I were familiar with Work being the product of Force and distance. The application of this method comes in at Mechanics 2. So you may not thing you need it, trying to understand the method helps but pure maths is just that, pure and methodical.
As for the OP, if pure maths is no longer allowed to be classed as such when it starts being useful, obviously no pure maths will be 'useful' by your definition. 
(Original post by When you see it...)
x 
(Original post by When you see it...)
It has no practical application, why can't people who work (professionally I mean) in pure maths do something that actually benefits people.
Yes, I know that it helps to explain things like science which have practical application, but we don't need pure maths to help with that once the problem (or whatever it is) is found because people can work out the maths needed without worrying about the silly things like mathematical proof.
Just to clarify my stance, I think if something has realworld application, I no longer consider it to be 'pure maths'. So please don't say things like 'it is useful for solving problems in physics to do with black holes (or whatever)' because then it would no longer be pure maths.
Other than for 'fun', what is the point in pure maths? 
(Original post by scherzi)
It's ****ing enjoyable 
(Original post by kerily)
Finding the dot product of two vectors isn't pure maths
As for the OP, if pure maths is no longer allowed to be classed as such when it starts being useful, obviously no pure maths will be 'useful' by your definition. 
(Original post by 117r)
So you're asking whether pure maths has a 'real world' application, defining pure maths to be maths that has no 'real world' application?
Also, what TenOfThem said.
I am well aware that eventually much pure maths has applications, but can't we just 'come up' with that mathematics when the realworld problem arises?
(Original post by TheJ0ker)
Many parts of applied maths originated in pure maths. I don't know how much you know about calculus but I can't even begin to describe how useful it is in applied maths. The idea was developed through concepts in pure maths.
My point is, it didn't need to be discovered until people realised the realworld problems.
A lot of maths was learnt in a realworld context was it not? 'Pure' maths came after 'science' or 'physics' or 'applied maths' whatever you want to call it. I know this doesn't mean much, but still... 
(Original post by When you see it...)
It has no practical application, why can't people who work (professionally I mean) in pure maths do something that actually benefits people.
Yes, I know that it helps to explain things like science which have practical application, but we don't need pure maths to help with that once the problem (or whatever it is) is found because people can work out the maths needed without worrying about the silly things like mathematical proof.
Just to clarify my stance, I think if something has realworld application, I no longer consider it to be 'pure maths'. So please don't say things like 'it is useful for solving problems in physics to do with black holes (or whatever)' because then it would no longer be pure maths.
Other than for 'fun', what is the point in pure maths? 
(Original post by When you see it...)
No, I'm asking what the point of it is. It seems selfish (that probably isn't the right word though) to study something just because you enjoy it.
I am well aware that eventually much pure maths has applications, but can't we just 'come up' with that mathematics when the realworld problem arises?
I only know about, like differentiation and integration but I think that makes more sense in an applied context (where the variables actually mean something i.e. displacement, velocity, acceleration, rate of change of acceleration with respect to time) than in a core context.
My point is, it didn't need to be discovered until people realised the realworld problems.
A lot of maths was learnt in a realworld context was it not? 'Pure' maths came after 'science' or 'physics' or 'applied maths' whatever you want to call it. I know this doesn't mean much, but still...
Reply
Submit reply
Register
Thanks for posting! You just need to create an account in order to submit the post Already a member? Sign in
Oops, something wasn't right
please check the following: