Just one sec...
Hey! Sign in to get help with your study questionsNew here? Join for free to post

Core 2 ONE mark question... Driving me insane :|

Announcements Posted on
Take our short survey, £100 of Amazon vouchers to be won! 23-09-2016
    • Thread Starter
    Offline

    3
    ReputationRep:
    Sin pheta + cos pheta = 0
    Show that tan pheta = -1

    Can someone quickly solve this, so I can move on with my life and look beyond the 30 minutes I've wasted...

    And er, thanks in advance.
    Offline

    2
    ReputationRep:
    remember that sin/cos=tan...
    Offline

    2
    ReputationRep:
    (Original post by Contrad!ction.)
    remember that sin/cos=tan...
    this.


    Most likely what' going wrong is that you've forgotten that cancelling out by dividing by something leaves a 1 not a 0. I'm guessing you're arriving at tan(theta) = 0 ?

    it's a mistake that I admittedly made quite a few silly times at the start of my maths A-level
    Offline

    1
    ReputationRep:
    isn't it theta
    Offline

    3
    ReputationRep:
    (Original post by MSI_10)
    Sin pheta + cos pheta = 0
    Show that tan pheta = -1

    Can someone quickly solve this, so I can move on with my life and look beyond the 30 minutes I've wasted...

    And er, thanks in advance.
    remember that sin/cos = tan

    so use that fact to move the cos pheta across to give

    sin = - cos

    divide through by -cos

    -tan = 1

    therefore multiply by -1 to get tan as positive. simples..
    Offline

    0
    ReputationRep:
    sin + cos = 0
    sin = -cos
    sin/cos = -1
    tan = -1
    • Thread Starter
    Offline

    3
    ReputationRep:
    Hmm thanks all

    Is it also possible to multiply the starting equation -1, then end up with tan theta=-1?
    sin theta + cos theta = 0

    -sin theta - cos theta = 0
    -sin theta=1+cos theta
    -sin theta/ cos theta = 1
    -tan theta=1

    tan theta=-1

    After posting, I did that and got it right.
    Unless it was a fluke
    Offline

    0
    ReputationRep:
    (Original post by MSI_10)
    Hmm thanks all

    Is it also possible to multiply the starting equation -1, then end up with tan theta=-1?
    sin theta + cos theta = 0

    -sin theta - cos theta = 0
    -sin theta=1+cos theta
    -sin theta/ cos theta = 1
    -tan theta=1

    tan theta=-1

    After posting, I did that and got it right.
    Unless it was a fluke
    Where did the 1 come from in the second line? It shouldn't be there. You should just have -sin theta=cos theta
    • Thread Starter
    Offline

    3
    ReputationRep:
    (Original post by Gemini92)
    Where did the 1 come from in the second line? It shouldn't be there. You should just have -sin theta=cos theta
    Oh okay thanks.

    So if I didn't make that mistake, it would still work right?

    So to summarize, my mistake was that when doing sin theta / cos theta, the right hand side gets a +1 NOT a 0?
    Offline

    0
    ReputationRep:
    (Original post by MSI_10)
    Oh okay thanks.

    So if I didn't make that mistake, it would still work right?

    So to summarize, my mistake was that when doing sin theta / cos theta, the right hand side gets a +1 NOT a 0?
    Yes.

    If you divide cos theta by cos theta you get one

    Same as if you divide anything most things by themselves
    Offline

    3
    ReputationRep:
    (Original post by wibletg)
    Yes.

    If you divide cos theta by cos theta you get one

    Same as if you divide anything by itself
    0/0 doesn't equal 1.
    Offline

    2
    ReputationRep:
    (Original post by Mr M)
    0/0 doesn't equal 1.
    haha, fair point
    Offline

    0
    ReputationRep:
    (Original post by Mr M)
    0/0 doesn't equal 1.
    I was tempted to put most things, infinity divided by infinity isn't one either
    Offline

    0
    ReputationRep:
    (Original post by IamBeowulf)
    isn't it theta
    Nah, it's a new Greek letter this.

     \sin(\cjRL{\varphi\put(0,0){\put(0,0)  { \put(-5,0){\theta}}}}) + \cos(\cjRL{\varphi\put(0,0){\put(0,0)  { \put(-5,0){\theta}}}}) = 0

    Pheta. That's how it's made: \ \ \varphi \theta\ \rightarrow\ \cjRL{\varphi\put(0,0){\put(0,0)  { \put(-1,0){\theta}}}}\ \rightarrow\ \cjRL{\varphi\put(0,0){\put(0,0)  { \put(-2,0){\theta}}}}\ \rightarrow\ \cjRL{\varphi\put(0,0){\put(0,0)  { \put(-3,0){\theta}}}}\ \rightarrow\ \cjRL{\varphi\put(0,0){\put(0,0)  { \put(-4,0){\theta}}}}\ \rightarrow\ \cjRL{\varphi\put(0,0){\put(0,0)  { \put(-5,0){\theta}}}}
    Offline

    3
    ReputationRep:
    (Original post by gff)
    Nah, it's a new Greek letter this.

     \sin(\cjRL{\varphi\put(0,0){\put(0,0)  { \put(-5,0){\theta}}}}) + \cos(\cjRL{\varphi\put(0,0){\put(0,0)  { \put(-5,0){\theta}}}}) = 0

    Pheta. That's how it's made: \ \ \varphi \theta\ \rightarrow\ \cjRL{\varphi\put(0,0){\put(0,0)  { \put(-1,0){\theta}}}}\ \rightarrow\ \cjRL{\varphi\put(0,0){\put(0,0)  { \put(-2,0){\theta}}}}\ \rightarrow\ \cjRL{\varphi\put(0,0){\put(0,0)  { \put(-3,0){\theta}}}}\ \rightarrow\ \cjRL{\varphi\put(0,0){\put(0,0)  { \put(-4,0){\theta}}}}\ \rightarrow\ \cjRL{\varphi\put(0,0){\put(0,0)  { \put(-5,0){\theta}}}}
    That's cool. Unfortunately PRSOM.
    Offline

    1
    ReputationRep:
    (Original post by wibletg)
    I was tempted to put most things, infinity divided by infinity isn't one either
    0/0 isn't infinity, it's solution set is.
    Offline

    3
    ReputationRep:
    (Original post by 122025278)
    0/0 isn't infinity, it's solution set is.
    I don't think he suggested it was.

Reply

Submit reply

Register

Thanks for posting! You just need to create an account in order to submit the post
  1. this can't be left blank
    that username has been taken, please choose another Forgotten your password?
  2. this can't be left blank
    this email is already registered. Forgotten your password?
  3. this can't be left blank

    6 characters or longer with both numbers and letters is safer

  4. this can't be left empty
    your full birthday is required
  1. Oops, you need to agree to our Ts&Cs to register
  2. Slide to join now Processing…

Updated: April 8, 2012
TSR Support Team

We have a brilliant team of more than 60 Support Team members looking after discussions on The Student Room, helping to make it a fun, safe and useful place to hang out.

Poll
How do you eat your pizza
Useful resources

Make your revision easier

Maths

Maths Forum posting guidelines

Not sure where to post? Read here first

Equations

How to use LaTex

Writing equations the easy way

Student revising

Study habits of A* students

Top tips from students who have already aced their exams

Study Planner

Create your own Study Planner

Never miss a deadline again

Polling station sign

Thinking about a maths degree?

Chat with other maths applicants

Can you help? Study help unanswered threads

Groups associated with this forum:

View associated groups
Study resources

The Student Room, Get Revising and Marked by Teachers are trading names of The Student Room Group Ltd.

Register Number: 04666380 (England and Wales), VAT No. 806 8067 22

Registered Office: International House, Queens Road, Brighton, BN1 3XE

Quick reply
Reputation gems: You get these gems as you gain rep from other members for making good contributions and giving helpful advice.