Hey there Sign in to join this conversationNew here? Join for free

Rings

Announcements Posted on
Study Help needs new mods! 14-04-2014
Post on TSR and win a prize! Find out more... 10-04-2014
    • Thread Starter
    • 3 followers
    Offline

    ReputationRep:
    Let  R be an integral domain and let  x, y \in R Show that  (x) = (y) if and only if  \exists \lambda \in R^* such that  x = \lambda y
    Where  (x) = \{rx: r \in R \}, R^* = \{x: x \ is \ a \ unit \} .
    Proving from left to right.
    In part of the answer it says  x \in (x)  = (y) \Rightarrow x = \lambda y  for some  \lambda \in R  and  y \in (y) = (x)  \Rightarrow y = \mu x for some  \mu \in R . Thus  x = \lambda y = \lambda \mu x \Rightarrow x-\lambda \mu x = 0_R \Rightarrow x(1_R - \lambda \mu) = 0_R \Rightarrow x=0_R or  (1_R - \lambda \mu) = 0_R .
    If  x = 0_R \Rightarrow y = \mu 0_R = 0_R \Rightarrow x = 1_R y . I don't understand the last implication, how does it imply  \lambda = 1_R from the case when  x= 0_R ?
    • 3 followers
    Offline

    If x=0 then it implies that y=0, and so x=1.y. In fact, for any \lambda it'd be true that x=\lambda y in this case; they just gave a concrete example of a value of \lambda that works.
    • Thread Starter
    • 3 followers
    Offline

    ReputationRep:
    Oh I see, thanks.

Reply

Submit reply

Register

Thanks for posting! You just need to create an account in order to submit the post
  1. this can't be left blank
    that username has been taken, please choose another Forgotten your password?

    this is what you'll be called on TSR

  2. this can't be left blank
    this email is already registered. Forgotten your password?

    never shared and never spammed

  3. this can't be left blank

    6 characters or longer with both numbers and letters is safer

  4. this can't be left empty
    your full birthday is required
  1. By completing the slider below you agree to The Student Room's terms & conditions and site rules

  2. Slide the button to the right to create your account

    Slide to join now Processing…

    You don't slide that way? No problem.

Updated: April 13, 2012
Article updates
Reputation gems:
You get these gems as you gain rep from other members for making good contributions and giving helpful advice.