Results are out! Find what you need...fast. Get quick advice or join the chat
x

Unlock these great extras with your FREE membership

  • One-on-one advice about results day and Clearing
  • Free access to our personal statement wizard
  • Customise TSR to suit how you want to use it

Constructing Basic Differential Equation

Announcements Posted on
Rate your uni — help us build a league table based on real student views 19-08-2015
  1. Offline

    ReputationRep:
    Here's the question;

    Fluid flows out of a cylindrical tank with constant cross section. At time t minutes, t>0, the volume of fluid remaining in the tank is V m3. The rate at which the fluid flows in m3 min-1 is proportional to the square root of V.
    Show that the depth h metres of fluid in the tank satisfies the differential equation:


    \dfrac{dh}{dt}=-kh^{\frac{1}{2}}

    Could someone please point me in the right direction with this. Thanks.
  2. Offline

    ReputationRep:
    I suggest you try using

    \frac{dV}{dt}=\frac{dV}{dh} \times \frac{dh}{dt}

    You'll need the formula for the volume of a cylinder, remember that the cross-sectional area is constant.

    The volume of fluid in the cylinder, V, as well as the height of fluid in the cylinder, h, will decrease as time passes which is why the negative is present.

  3. Offline

    ReputationRep:
    (Original post by JeremyB)
    Here's the question;

    Fluid flows out of a cylindrical tank with constant cross section. At time t minutes, t>0, the volume of fluid remaining in the tank is V m3. The rate at which the fluid flows in m3 min-1 is proportional to the square root of V.
    Show that the depth h metres of fluid in the tank satisfies the differential equation:


    \dfrac{dh}{dt}=-kh^{\frac{1}{2}}

    Could someone please point me in the right direction with this. Thanks.
    Havent read the whole question but if you ask me to solve the differential equation given her is what I do
    1)multiply both sides by dt
    2)divide both sides by h1/2
    3)leave k as where it is
    then just integrate both sides and remember to put +C on the right hand side

Reply

Submit reply

Register

Thanks for posting! You just need to create an account in order to submit the post
  1. this can't be left blank
    that username has been taken, please choose another Forgotten your password?
  2. this can't be left blank
    this email is already registered. Forgotten your password?
  3. this can't be left blank

    6 characters or longer with both numbers and letters is safer

  4. this can't be left empty
    your full birthday is required
  1. By joining you agree to our Ts and Cs, privacy policy and site rules

  2. Slide to join now Processing…

Updated: April 19, 2012
TSR Support Team

We have a brilliant team of more than 60 Support Team members looking after discussions on The Student Room, helping to make it a fun, safe and useful place to hang out.

New on TSR

Rate your uni

Help build a new league table

Poll
How do you read?
Study resources
Quick reply
Reputation gems: You get these gems as you gain rep from other members for making good contributions and giving helpful advice.