Results are out! Find what you Get quick advice or join the chat

Unlock these great extras with your FREE membership

  • One-on-one advice about results day and Clearing
  • Free access to our personal statement wizard
  • Customise TSR to suit how you want to use it

Mechanics M2 - Circular Motion

Announcements Posted on
Rate your uni — help us build a league table based on real student views 19-08-2015
  1. Offline

    Struggling on this problem:

    A particle of mass m, is attached to one end of a light, inextensible string of length l. The other end of the string is fixed at P. The particle moves in a horizontal circle of radius r at a constant speed v. (In the diagram, the particle is basically following the path of the circular base of a cone, and the point P is the tip of the cone.)

    Show that the tension in the string, T, is given by  T= \dfrac{mgl}{\sqrt{l^2 - r^2}} .

    What I did do was:

    Let the angle between the vertical and string be a.
    Equating vertical components:  Tcos(a)=mg
    Equating horizontal componets with centripetal force  Tsin(a)=\dfrac{mv^2}{r}

    As  r=lsin(a) then  Tsin(a)=\dfrac{mv^2}{lsin(a)}

    Then in order to eliminate the sine's and cosine's:

      sin^2(a)=\dfrac{mv^2}{Tl} so  cos^2(a)=1 - \dfrac{mv^2}{Tl} from resolving vertical components  cos^2(a)=(\dfrac{mg}{T})^2 .

    Therefore  (\dfrac{mg}{T})^2 = 1 - \dfrac{mv^2}{Tl}

    But rearranging this to find T doesn't seem to work out, am I heading along the right tracks? Cheers in advance
  2. Offline

    (Original post by marcus2001)
    What I did do was:

    Let the angle between the vertical and string be a.
    Equating vertical components:  Tcos(a)=mg
    Can't see anything wrong with your working but you have over-complicated your approach. Surprisingly, the bit of your working quoted above is pretty much all you need as you can get an expression for cos(a) with a bit of Pythagoras and trigonometry and it works out quite quickly.

    You went to a lot of trouble to eliminate the angle but this was in fact something that you knew plenty about in terms of r and l.


Submit reply


Thanks for posting! You just need to create an account in order to submit the post
  1. this can't be left blank
    that username has been taken, please choose another Forgotten your password?
  2. this can't be left blank
    this email is already registered. Forgotten your password?
  3. this can't be left blank

    6 characters or longer with both numbers and letters is safer

  4. this can't be left empty
    your full birthday is required
  1. By joining you agree to our Ts and Cs, privacy policy and site rules

  2. Slide to join now Processing…

Updated: April 19, 2012
TSR Support Team

We have a brilliant team of more than 60 Support Team members looking after discussions on The Student Room, helping to make it a fun, safe and useful place to hang out.

Today on TSR

Win a mini-fridge

Don't miss our Freshers competition!

Do you prefer exams or coursework?
Study resources

Looking for some help?

Ask our friendly student community a question

Ask a question now

Or get help from our smart tools and guides

GCSE help A-level help Uni application help Everything else
Quick reply
Reputation gems: You get these gems as you gain rep from other members for making good contributions and giving helpful advice.