Just one sec...
Hey! Sign in to get help with your study questionsNew here? Join for free to post

Mechanics M2 - Circular Motion

Announcements Posted on
Last chance to win! Our 1984 city-break competition closes on Monday. Post now to enter. 22-07-2016
    • Thread Starter
    Offline

    ReputationRep:
    Struggling on this problem:

    A particle of mass m, is attached to one end of a light, inextensible string of length l. The other end of the string is fixed at P. The particle moves in a horizontal circle of radius r at a constant speed v. (In the diagram, the particle is basically following the path of the circular base of a cone, and the point P is the tip of the cone.)

    Show that the tension in the string, T, is given by  T= \dfrac{mgl}{\sqrt{l^2 - r^2}} .

    What I did do was:

    Let the angle between the vertical and string be a.
    Equating vertical components:  Tcos(a)=mg
    Equating horizontal componets with centripetal force  Tsin(a)=\dfrac{mv^2}{r}

    As  r=lsin(a) then  Tsin(a)=\dfrac{mv^2}{lsin(a)}

    Then in order to eliminate the sine's and cosine's:

      sin^2(a)=\dfrac{mv^2}{Tl} so  cos^2(a)=1 - \dfrac{mv^2}{Tl} from resolving vertical components  cos^2(a)=(\dfrac{mg}{T})^2 .

    Therefore  (\dfrac{mg}{T})^2 = 1 - \dfrac{mv^2}{Tl}


    But rearranging this to find T doesn't seem to work out, am I heading along the right tracks? Cheers in advance
    Offline

    ReputationRep:
    (Original post by marcus2001)
    What I did do was:

    Let the angle between the vertical and string be a.
    Equating vertical components:  Tcos(a)=mg
    Can't see anything wrong with your working but you have over-complicated your approach. Surprisingly, the bit of your working quoted above is pretty much all you need as you can get an expression for cos(a) with a bit of Pythagoras and trigonometry and it works out quite quickly.

    You went to a lot of trouble to eliminate the angle but this was in fact something that you knew plenty about in terms of r and l.

Reply

Submit reply

Register

Thanks for posting! You just need to create an account in order to submit the post
  1. this can't be left blank
    that username has been taken, please choose another Forgotten your password?
  2. this can't be left blank
    this email is already registered. Forgotten your password?
  3. this can't be left blank

    6 characters or longer with both numbers and letters is safer

  4. this can't be left empty
    your full birthday is required
  1. Oops, you need to agree to our Ts&Cs to register
  2. Slide to join now Processing…

Updated: April 19, 2012
TSR Support Team

We have a brilliant team of more than 60 Support Team members looking after discussions on The Student Room, helping to make it a fun, safe and useful place to hang out.

Poll
Bourne or Bond?
Useful resources

Make your revision easier

Maths

Maths Forum posting guidelines

Not sure where to post? Read here first

Equations

How to use LaTex

Writing equations the easy way

Student revising

Study habits of A* students

Top tips from students who have already aced their exams

Study Planner

Create your own Study Planner

Never miss a deadline again

Polling station sign

Thinking about a maths degree?

Chat with other maths applicants

Can you help? Study help unanswered threads

Groups associated with this forum:

View associated groups
Study resources

The Student Room, Get Revising and Marked by Teachers are trading names of The Student Room Group Ltd.

Register Number: 04666380 (England and Wales), VAT No. 806 8067 22

Registered Office: International House, Queens Road, Brighton, BN1 3XE

Quick reply
Reputation gems: You get these gems as you gain rep from other members for making good contributions and giving helpful advice.