Just one sec...
Hey! Sign in to get help with your study questionsNew here? Join for free to post

Rings

Announcements Posted on
    • Thread Starter
    Offline

    ReputationRep:
    Let R be a commutative ring and I an ideal of R. Show that if I is maximal then R/I is a field. I'm a bit stuck on how to start this. Any would would be appreciated. Thanks.
    Offline

    ReputationRep:
    (Original post by JBKProductions)
    Let R be a commutative ring and I an ideal of R. Show that if I is maximal then R/I is a field. I'm a bit stuck on how to start this. Any would would be appreciated. Thanks.
    Suppose R/I is not a field. Then there exists x+I in R/I with no multiplicative inverse, so...
    Offline

    Ok. Pick x in R with x not in I (else x is just 0 in R/I). Now consider the ideal generated by x and I: what can we say about this since I is maximal?
    • Thread Starter
    Offline

    ReputationRep:
    Unless I misunderstood something, I'm not sure why if x is in I then x = 0 in R/I? Thanks for the replies btw.
    Offline

    ReputationRep:
    If you know the correspondence theorem this is immediate (i.e. if R/I has a non-trivial proper ideal J then consider the corresponding ideal J' in R. The ideal J' contains I so must be either R or I by maximality of I. The first contradicts the fact that J was proper, the second contradicts non-triviality)

    I am assuming therefore, that you don't know and/or aren't expected to know the correspondence theorem. In that case; it is a bit harder to think up.

    Hint: For each non-zero element x+I in R/I and consider the ideal J = I + Rx.

    Spoiler:
    Show

    Since x isn't in I (else x+I would be zero in R/I), I is strictly contained in J, whence by maximality of I we have that J = R. Thus in particular - the identity element 1 of R is in J and so we may write 1 = i + rx for some r in R, i in I. It then follows that (x+I)(r+I) = xr +I = xr + i + I = 1 + I so that (x+I) is invertible as required.
    Offline

    ReputationRep:
    (Original post by JBKProductions)
    Unless I misunderstood something, I'm not sure why if x is in I then x = 0 in R/I? Thanks for the replies btw.
    By pure definition: If x = i for some i in I then the image of x under the projection from R to R/I is equal to the coset 0 + I

    Look up the definition and construction of the quotient ring to refresh yourself.
    • Thread Starter
    Offline

    ReputationRep:
    (Original post by Jake22)
    By pure definition: If x = i for some i in I then the image of x under the projection from R to R/I is equal to the coset 0 + I

    Look up the definition and construction of the quotient ring to refresh yourself.
    Ah ok, I see. I'll have a go at the rest of it now. Thanks.

Reply

Submit reply

Register

Thanks for posting! You just need to create an account in order to submit the post
  1. this can't be left blank
    that username has been taken, please choose another Forgotten your password?
  2. this can't be left blank
    this email is already registered. Forgotten your password?
  3. this can't be left blank

    6 characters or longer with both numbers and letters is safer

  4. this can't be left empty
    your full birthday is required
  1. Oops, you need to agree to our Ts&Cs to register
  2. Slide to join now Processing…

Updated: May 11, 2012
TSR Support Team

We have a brilliant team of more than 60 Support Team members looking after discussions on The Student Room, helping to make it a fun, safe and useful place to hang out.

Poll
How do you sleep?
Useful resources

Make your revision easier

Maths

Maths Forum posting guidelines

Not sure where to post? Read here first

Equations

How to use LaTex

Writing equations the easy way

Student revising

Study habits of A* students

Top tips from students who have already aced their exams

Study Planner

Create your own Study Planner

Never miss a deadline again

Polling station sign

Thinking about a maths degree?

Chat with other maths applicants

Can you help? Study help unanswered threads

Groups associated with this forum:

View associated groups
Study resources

The Student Room, Get Revising and Marked by Teachers are trading names of The Student Room Group Ltd.

Register Number: 04666380 (England and Wales), VAT No. 806 8067 22

Registered Office: International House, Queens Road, Brighton, BN1 3XE

Quick reply
Reputation gems: You get these gems as you gain rep from other members for making good contributions and giving helpful advice.