Results are out! Find what you Get quick advice or join the chat

Unlock these great extras with your FREE membership

  • One-on-one advice about results day and Clearing
  • Free access to our personal statement wizard
  • Customise TSR to suit how you want to use it

Vector Spaces

Announcements Posted on
Find your uni forum to get talking to other applicants, existing students and your future course-mates 27-07-2015
Win top prizes in our mega results day giveaway... 24-07-2015
  1. Offline

    Let V be a finite dimensional vector space. If C is a finite spanning set for V and if I is a linearly independent subset of V such that  I \subseteq C prove that there is a basis B of V such that  I \subseteq B \subseteq C . Bit stuck on this proof, any help would be appreciated, thanks.
  2. Offline

    I suppose one way would be to let the subset  I be comprised of linearly independent vectors  \utilde{c}_1, \utilde{c}_2, \hdots, \utilde{c}_i say, and  C be comprised of  \utilde{c}_1, \utilde{c}_2, \hdots, \utilde{c}_i, \utilde{c}_{i+1}, \hdots, \utilde{c}_{i+m} say.

    With judicious use of sifting, you should be able to prove this.
  3. Offline

    Cheers, I'll give it a go.
  4. Offline

    Any linearly independent set is contained in a basis. (Standard proof: take the elements of I and then add to them by repeatedly adding vectors not contained in the linear span of what you already have, and check that it works.) You need to show that you can modify this proof by adding vectors which, not only are in the complement of the linear span, but which also lie in C, and Narev's post is the simplest way forward. (Namely, whereas in the 'standard proof' you'd pick "any element of the complement of the linear span of the vectors already picked", you instead pick specifically an element of C. You just have to argue that such elements exist.)


Submit reply


Thanks for posting! You just need to create an account in order to submit the post
  1. this can't be left blank
    that username has been taken, please choose another Forgotten your password?
  2. this can't be left blank
    this email is already registered. Forgotten your password?
  3. this can't be left blank

    6 characters or longer with both numbers and letters is safer

  4. this can't be left empty
    your full birthday is required
  1. By joining you agree to our Ts and Cs, privacy policy and site rules

  2. Slide to join now Processing…

Updated: May 21, 2012
TSR Support Team

We have a brilliant team of more than 60 Support Team members looking after discussions on The Student Room, helping to make it a fun, safe and useful place to hang out.

Did you lie on your personal statement?
New on TSR

Results are coming...

No sweat. Here's all you need to make sure you're ready

Study resources

Think you'll be in clearing or adjustment?

Hear direct from unis that want to talk to you

Get email alerts for university course places that match your subjects and grades. Just let us know what you're studying.

Quick reply
Reputation gems: You get these gems as you gain rep from other members for making good contributions and giving helpful advice.