You are Here: Home

# Summation of trigonometric identities

Announcements Posted on
Talking about ISA/EMPA specifics is against our guidelines - read more here 28-04-2016
1. Prove that

Attempt:

But the powers of the exp don't match the target of which I'm supposed to prove. Pointers anyone?
2. (Original post by johnconnor92)
Prove that

Attempt:

But the powers of the exp don't match the target of which I'm supposed to prove. Pointers anyone?
e^0=1
3. Gah stupid mistake. Here's a revised one.

Prove that

Attempt:

But the powers of the exp don't match the target of which I'm supposed to prove. Pointers anyone?
4. Don't they? I've not looked too closely but I think you may have forgotten that e^(ix) = cosx + isinx, so you've summed cos(kx) + i sin(kx), so you ought to be taking just the imaginary part of that sum you've got, that will probably mess about with it suitably well as to make it look similar.
5. You could start like this:

6. (Original post by Allofthem)
Don't they? I've not looked too closely but I think you may have forgotten that e^(ix) = cosx + isinx, so you've summed cos(kx) + i sin(kx), so you ought to be taking just the imaginary part of that sum you've got, that will probably mess about with it suitably well as to make it look similar.
I do know about that, but if we look at the powers of the natural constant how are we supposed to get a half out of the terms? I didn't go on because I hesitated on seeing the powers.

(Original post by BabyMaths)
You could start like this:

I know about this method. Tried it and done it, too. But I just want to nail the question with the method here.
7. (Original post by johnconnor92)
= \dfrac{(1 - e^{i((n+1)\theta)})}{1- e^{i(\theta)}}
As you probably know, You want to take the imaginary part of this, which means you need to make the denominator easier to deal with.

The normal way of doing this would be to multiply top and bottom by , which makes the denominator real.

A better method here is to multiply top and bottom by , which leaves the denominator as , which is pure imaginary. It should work out fairly easily from there.
8. (Original post by DFranklin)
As you probably know, You want to take the imaginary part of this, which means you need to make the denominator easier to deal with.

The normal way of doing this would be to multiply top and bottom by , which makes the denominator real.

A better method here is to multiply top and bottom by , which leaves the denominator as , which is pure imaginary. It should work out fairly easily from there.
OF COURSE! I got the complex conjugate for exponentials wrong! OMGWTFBBQ
9. (Original post by johnconnor92)
OF COURSE! I got the complex conjugate for exponentials wrong! OMGWTFBBQ
Note what I said about the "better" method here (which doesn't use the complex conjugate). It's a trick worth knowing.
10. (Original post by DFranklin)
As you probably know, You want to take the imaginary part of this, which means you need to make the denominator easier to deal with. The normal way of doing this would be to multiply top and bottom by , which makes the denominator real.

Hmm... Something went wrong.

A better method here is to multiply top and bottom by , which leaves the denominator as , which is pure imaginary. It should work out fairly easily from there.

This is amazing! I always thought denominators with an imaginary numbers cannot be navigated like that of real numbers. But what went wrong in the above calculation? Thank you so much!
11. (Original post by DFranklin)
Note what I said about the "better" method here (which doesn't use the complex conjugate). It's a trick worth knowing.
I proved the summation via the complex conjugate method. Here's another attempt at the pointer you gave me:

I don't think I made any mistakes with the working above (god forbid), but what I really don't know is whether I should be taking the real/imaginary part of the expression. The real part give the answer at the numerator, but what about the denominator?

12. You need to take the imaginary part of the whole expression. (You can multiply top and bottom by i to make the denominator real).
13. (Original post by DFranklin)
You need to take the imaginary part of the whole expression. (You can multiply top and bottom by i to make the denominator real).
What? So after the multiplication of the e^(-i theta/2) factor i STILL have to multiply another i factor into the expression? Where can I learn more about this? Thank you!

On a side note, how does a fraction with an imaginary denominator differ from that of a real denominator? Are there any significant changes in its behaviour when the numerator/denominator changes by 1 or 2?
14. (Original post by DFranklin)
You need to take the imaginary part of the whole expression. (You can multiply top and bottom by i to make the denominator real).
(Original post by johnconnor92)
What? So after the multiplication of the e^(-i theta/2) factor i STILL have to multiply another i factor into the expression? Where can I learn more about this? Thank you!

On a side note, how does a fraction with an imaginary denominator differ from that of a real denominator? Are there any significant changes in its behaviour when the numerator/denominator changes by 1 or 2?
15. (Original post by johnconnor92)
On a side note, how does a fraction with an imaginary denominator differ from that of a real denominator? Are there any significant changes in its behaviour when the numerator/denominator changes by 1 or 2?
Hm? Rationalizing the denominator doesn't change the number, it's just that you cannot identify the real/imaginary part before you rationalize the denominator.

For example, take the complex number z:

Rather:

As always, sorry if I misunderstood your question.
16. (Original post by aznkid66)
Hm? Rationalizing the denominator doesn't change the number, it's just that you cannot identify the real/imaginary part before you rationalize the denominator.

For example, take the complex number z:

Rather:

As always, sorry if I misunderstood your question.
That's exactly what I was confused about! DFranklin asked a factor of e^{i theta/2), and doing so produces a pure imaginary denominator which, surprisingly, gives the required answer in imaginary form. But why?
17. (Original post by johnconnor92)
That's exactly what I was confused about! DFranklin asked a factor of e^{i theta/2), and doing so produces a pure imaginary denominator which, surprisingly, gives the required answer in imaginary form. But why?
I'm really not sure what your problem is, which is why I haven't responded..

If we want to find the imaginary part of , we can multiply top and buttom by i: and then read off the imaginary part (a/-d) = -a/d.
18. (Original post by DFranklin)
I'm really not sure what your problem is, which is why I haven't responded..

If we want to find the imaginary part of , we can multiply top and buttom by i: and then read off the imaginary part (a/-d) = -a/d.
Oh so now i see your trick you hinted. This is amazing! Thank you so very much for teaching me this!

## Register

Thanks for posting! You just need to create an account in order to submit the post
1. this can't be left blank
2. this can't be left blank
3. this can't be left blank

6 characters or longer with both numbers and letters is safer

4. this can't be left empty
1. Oops, you need to agree to our Ts&Cs to register

Updated: June 20, 2012
TSR Support Team

We have a brilliant team of more than 60 Support Team members looking after discussions on The Student Room, helping to make it a fun, safe and useful place to hang out.

This forum is supported by:
Today on TSR

### How to predict exam questions

No crystal ball required

Poll
Useful resources

### Maths Forum posting guidelines

Not sure where to post? Read here first

### How to use LaTex

Writing equations the easy way

### Study habits of A* students

Top tips from students who have already aced their exams