Results are out! Find what you need...fast. Get quick advice or join the chat
Hey! Sign in to get help with your study questionsNew here? Join for free to post

Mappings

Announcements Posted on
    • Thread Starter
    • 0 followers
    Offline

    ReputationRep:
    If V is a 3-dimensional Lie algebra with basis vectors E,F,G with Lie bracket relations [E,F]=G, [E,G]=0, [F,G]=0 and V' is the Lie algebra consisting of all 3x3 strictly upper triangular matrices with complex entries then would you say the following 2 mappings (isomorphisms) are different? I had to give an example of 2 different isomorphisms between these vector spaces.

    \varphi : V \to V' given by

    \varphi(aE+bF+cG)=\left( \begin{array}{ccc} 0 & a & c\\ 0 & 0 & b\\ 0 & 0 & 0 \end{array} \right)\;,\;\;\;\;\;a,b,c \in \mathbb{C}

    and \bar{\varphi} : V \to V' given by

    \bar{\varphi}(E)=\left( \begin{array}{ccc} 0 & 1 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{array} \right)

    \bar{\varphi}(F)=\left( \begin{array}{ccc} 0 & 0 & 0\\ 0 & 0 & 1\\ 0 & 0 & 0 \end{array} \right)

    \bar{\varphi}(G)=\left( \begin{array}{ccc} 0 & 0 & 1\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{array} \right)
    • 1 follower
    Offline

    ReputationRep:
    Maybe this post is a little late given that the thread is a week old now, but recall that Lie algebra isomorphisms are also linear transformations, so are determined by their values on the basis elements E,F and G. So it seems your two maps are the same. However, the map you've given is an isomorphism and from this, it doesn't look too difficult to find a second?

Reply

Submit reply

Register

Thanks for posting! You just need to create an account in order to submit the post
  1. this can't be left blank
    that username has been taken, please choose another Forgotten your password?
  2. this can't be left blank
    this email is already registered. Forgotten your password?
  3. this can't be left blank

    6 characters or longer with both numbers and letters is safer

  4. this can't be left empty
    your full birthday is required
  1. By joining you agree to our Ts and Cs, privacy policy and site rules

  2. Slide to join now Processing…

Updated: June 16, 2012
New on TSR

The future of apprenticeships

Join the discussion in the apprenticeships hub!

Article updates
Reputation gems: You get these gems as you gain rep from other members for making good contributions and giving helpful advice.