You are Here: Home

Announcements Posted on
Take our survey to be in with the chance of winning a £50 Amazon voucher or one of 5 x £10 Amazon vouchers 28-05-2016
1. Hello! Ok so I am a bit confused. Why is it that sometimes when finding the angle between two lines you simply use the direction vectors (after the lamda or mew) as your a and b and sometimes you have to do like the vector AC dotted with AB and then the modulus's of those? How do you know when to use what?! :s
2. Both are direction vectors, the AC or AB in your example and the direction vector within the vector equation of a line (I.e the second bit) that's why you use both. If you draw them it might help.
Hello! Ok so I am a bit confused. Why is it that sometimes when finding the angle between two lines you simply use the direction vectors (after the lamda or mew) as your a and b and sometimes you have to do like the vector AC dotted with AB and then the modulus's of those? How do you know when to use what?! :s
also represent directions.
4. sometimes you have to do like the vector AC dotted with AB

this would be more if they asked you to find the angle between two vectors, rather than two lines...
5. OH! OK! silly me. So when we are asked to find the angle between two lines we would use the given direction vectors but if they asked for the angle between two vectors then you use the other
6. But take for example the june 2010 paper question 7b) It only asks for the angle ACB so I wouldn't know which method to use
But take for example the june 2010 paper question 7b) It only asks for the angle ACB so I wouldn't know which method to use
angle ACB is the angle between vectors CA and CB
8. I worked out AC (3,6,3) and BC (10,0,4) and then the modulus of AC is 3rt6 and the modulus of AB is 2rt29 I used the formula but come out with the wrong answer using these values.
Hello! Ok so I am a bit confused. Why is it that sometimes when finding the angle between two lines you simply use the direction vectors (after the lamda or mew) as your a and b and sometimes you have to do like the vector AC dotted with AB and then the modulus's of those? How do you know when to use what?! :s

You can use any vectors being parallel to the lines.
The simplest is to use the given direction vectors e.g. a and b,
but if these are unknown you can use any vector 'representing' a
line segment f.e. between points A and C, where A and C are on the
same line. This vector AC maybe considered as direction vector too,
(and using it in a given equation of a line as direction vector, you
have to change only lamdba to an other parameter f.e beta to get the
same vector for the running point of the line)

To calculate the angle between two lines means to calculate it between
the two direction vectors or between the two normal vector, wiches mutually perpendicular to the direction vectors so they have the same angle between each other than it does the direction vectors.
For calculating the angle between two vectors we use the dot product od these vectors. THese product maybe calculated with two methods:
1. From the known coordinates
a(a1,a2,a3) and b(b1,b2,b3) -> a*b=a1*b1+a2*b2+a3*b3=>constant
2. From the given modulus of the vectors and the angle between them
a*b=|a|*|b|*cosA

Taking equal the two equations

At the numerator you have to give the dot product from coordinates.
Dividing it by the moduluses gives the cosine of angle.
This means that we calculate the dot product of two unit-length vectors being parallel with the original vectors.
I worked out AC (3,6,3) and BC (10,0,4) and then the modulus of AC is 3rt6 and the modulus of AB is 2rt29 I used the formula but come out with the wrong answer using these values.
Did you get for angle 57.95 ?
11. (Original post by ztibor)
You can use any vectors being parallel to the lines.
The simplest is to use the given direction vectors e.g. a and b,
but if these are unknown you can use any vector 'representing' a
line segment f.e. between points A and C, where A and C are on the
same line. This vector AC maybe considered as direction vector too,
(and using it in a given equation of a line as direction vector, you
have to change only lamdba to an other parameter f.e beta to get the
same vector for the running point of the line)

To calculate the angle between two lines means to calculate it between
the two direction vectors or between the two normal vector, wiches mutually perpendicular to the direction vectors so they have the same angle between each other than it does the direction vectors.
For calculating the angle between two vectors we use the dot product od these vectors. THese product maybe calculated with two methods:
1. From the known coordinates
a(a1,a2,a3) and b(b1,b2,b3) -> a*b=a1*b1+a2*b2+a3*b3=>constant
2. From the given modulus of the vectors and the angle between them
a*b=|a|*|b|*cosA

Taking equal the two equations

At the numerator you have to give the dot product from coordinates.
Dividing it by the moduluses gives the cosine of angle.
This means that we calculate the dot product of two unit-length vectors being parallel with the original vectors.
Thank you SO much!!!

## Register

Thanks for posting! You just need to create an account in order to submit the post
1. this can't be left blank
2. this can't be left blank
3. this can't be left blank

6 characters or longer with both numbers and letters is safer

4. this can't be left empty
1. Oops, you need to agree to our Ts&Cs to register

Updated: June 20, 2012
TSR Support Team

We have a brilliant team of more than 60 Support Team members looking after discussions on The Student Room, helping to make it a fun, safe and useful place to hang out.

This forum is supported by:
Today on TSR

### Don't be a half-term hermit

How to revise this week and still have a life

Poll
Useful resources

### Maths Forum posting guidelines

Not sure where to post? Read here first

### How to use LaTex

Writing equations the easy way

### Study habits of A* students

Top tips from students who have already aced their exams