The Student Room Group

OCR MEI C3 Maths June 2015

Scroll to see replies

Original post by Robbo54
I think I got ~60 in C3, and 14 in the coursework, and in C4 I think I got 80/90, do you think that's enough for an A*?


I think your C3 exam and coursework both might let you down, unfortunately, considering that it is probably going to be like 77-ish for an A* in c4 (it was a very easy exam)
(edited 8 years ago)
Original post by Infamous7
I think your C3 exam and coursework both might let you down, unfortunately, considering that it is probably going to be like 77-ish for an A* in c4 (it was a very easy exam)


Oh well, an A is still pretty good. I'm going to hold onto some hope though as I really want an A* :frown:
(edited 8 years ago)
Original post by avfcfan
what happens if in the exam the answer is '4 - 3 ln 3' and you write 4 - ln (3^3)? Technically they are the same, but from their mark schemes they dont shed any light on further unnecessary simplification. I hope I haven't lost stupid marks doing this, as i did it throughout c3 and c4

Bump.
Can anyone help me with this concern?
Original post by avfcfan
Bump.
Can anyone help me with this concern?


In mark schemes they usually have "oe" next to the final answer mark; this means "or equivalent". You will get the mark if your answer is numerically identical to the answer in the mark scheme. If your answer is grossly un-simplified though, you may lose the mark.

In this case, you would definitely get the mark.
Original post by lizard54142
In mark schemes they usually have "oe" next to the final answer mark; this means "or equivalent". You will get the mark if your answer is numerically identical to the answer in the mark scheme. If your answer is grossly un-simplified though, you may lose the mark.

In this case, you would definitely get the mark.

hmmm I forgot about oe, nice to see that my answer would qualify for that. Thanks, puts my mind at ease now
Original post by Duskstar
I'm going to try and do a mark scheme here. Bare in mind that I'm in Year 12 too >.>

Firstly, thanks to Barrel who actually posted the paper (page 15). here are the pages in order:
http://www.thestudentroom.co.uk/attachment.php?attachmentid=426179&d=1434104177
http://www.thestudentroom.co.uk/attachment.php?attachmentid=426181&d=1434104202
http://www.thestudentroom.co.uk/attachment.php?attachmentid=426183&d=1434104269
http://www.thestudentroom.co.uk/attachment.php?attachmentid=426185&d=1434104300


1.y=e2xcosx[br]dydx=e2x(sinx)+2e2xcosx[br]dydx=e2x(2cosxsinx)[2][br]solveformax:[br]0=e2x(2cosxsinx)[br]2cosx=sinx[br]tanx=2[2][br]x=1.1to2s.f.[br]subintoy=e2xcosx[br]y=4.1to2s.f.[br]P(1.1,4.1)[2]1. \,\, y = e^{2x} \cos x [br]\dfrac{dy}{dx} = e^{2x} (-\sin x) + 2e^{2x} \cos x[br]\dfrac{dy}{dx} = e^{2x} (2 \cos x - \sin x) \,\, [2][br]\mathrm{- solve for max:}[br]0 = e^{2x} (2 \cos x - \sin x) [br]2 \cos x = \sin x [br]\tan x = 2 \,\, [2][br]x = 1.1 \, \mathrm{to 2 s.f.}[br]\mathrm{- sub into y = e^{2x} \cos x}[br]y = 4.1 \, \mathrm{to 2 s.f.} [br]P(1.1, 4.1) \,\, [2]


2.2x13dx[br]solvebyinspectionofsubstitution.Substitutionwouldbeu=2x1[br]=38(2x1)43+c[4]2. \,\, \displaystyle \int \sqrt [3]{2x - 1} \, dx[br]\mathrm{- solve by inspection of substitution. Substitution would be u = 2x - 1}[br]= \dfrac {3}{8} (2x - 1)^{\frac {4}{3}} + c \,\, [4]


3.12x3lnxdx[br]integratebyparts:[br]dvdx=x3,u=lnx[br]v=x44,dudx=1x[2][br]followthrough[2],and[br]=4ln21516[1]3. \,\, \displaystyle \int^2 _1 x^{3}\ln x \, dx[br]\mathrm{- integrate by parts:}[br]\dfrac {dv}{dx} = x^{3}, u = lnx[br]v = \dfrac {x^4}{4}, \dfrac{du}{dx} = \frac{1}{x} \,\, [2][br]\mathrm{- follow through [2], and}[br]= 4 \ln 2 - \frac{15}{16} \,\, [1]


4.V=13πr2h,dVdt=5[br]drawatriangle:[br]tan45=rh[br]r=h[br]V=13πh3[2][br]dVdh=πh2[br]chainrule:[br]dhdt=dVdt×dhdV=dVdtdVdh[br]dhdt=5πh2[2][br]h=10,dhdt=5100π=120π[1]4. \,\, V = \dfrac{1}{3} \pi r^{2} h, \, \dfrac{dV}{dt} = 5[br]\mathrm{- draw a triangle:}[br]\tan 45 = \dfrac{r}{h}[br]r = h[br]V = \dfrac{1}{3} \pi h^3 \,\, [2][br]\dfrac{dV}{dh} = \pi h^2[br]\mathrm{- chain rule:}[br]\dfrac{dh}{dt} = \dfrac{dV}{dt} \times \dfrac{dh}{dV} = \dfrac{\frac{dV}{dt}}{\frac{dV}{dh}}[br]\dfrac{dh}{dt} = \dfrac{5}{\pi h^2} \,\, [2][br]h = 10, \, \dfrac{dh}{dt} = \dfrac{5}{100 \pi} = \dfrac{1}{20 \pi} \,\, [1]


5.y2+2xlny=x2[br]justput(1,1)inImnotwritingthatoutforyou...[1][br]differentiateimplicitly:[br]2ydydx+2x1ydydx+2lny=2x[br]dydx2(y+xy)=2(xlny)[br]dydx=xlnyy+xy[3][br]substitutein(1,1)[br]dydx=101+1=12[1]5. \,\, y^2 + 2x \ln y = x^2[br]\mathrm{- just put (1, 1) in - I'm not writing that out for you... [1]}[br]\mathrm{- differentiate implicitly:}[br]2y \dfrac{dy}{dx} + 2x \dfrac{1}{y} \dfrac{dy}{dx} + 2 \ln y = 2x[br]\dfrac{dy}{dx} 2 \left(y + \dfrac{x}{y} \right) = 2 \left(x - \ln y \right)[br]\dfrac{dy}{dx} = \dfrac{x - \ln y}{y + \frac{x}{y}} \,\, [3][br]\mathrm{- substitute in (1, 1)}[br]\dfrac{dy}{dx} = \dfrac{1 - 0}{1 + 1} = \dfrac{1}{2} \, [1]


- I wasn't completely sure of the method for the second part, this is what a friend told me the method was (I think I do it correctly). Because of the nature of these two questions, however, I'm not 100% sure you need a method if you get the answer correct. It's only 1 mark each either way ~
6.6sin1xπ=0[br]sin1x=π6[br]x=sinπ6=12[2][br]method:[br]sin1x=cos1x[br]θ=sin1x,θ=cos1x[br]x=sinθ,x=cosθ[br]dividethrough(solvethemsimultaneously)[br]1=tanθ[br]θ=π4[br]x=sinπ4=12(=22)[2]6. \,\, 6 \sin ^{-1} x - \pi = 0[br]\sin ^{-1} x = \dfrac{\pi}{6}[br]x = \sin \dfrac{\pi}{6} = \dfrac {1}{2} \,\, [2][br]\mathrm{method:}[br]\sin ^{-1} x = \cos ^{-1} x[br]\theta = \sin ^{-1} x, \, \theta = \cos ^{-1} x[br]x = \sin \theta, \, x = \cos \theta[br]\mathrm{- divide through (solve them simultaneously)}[br]1 = \tan \theta[br]\theta = \dfrac{\pi}{4}[br]x = \sin \dfrac{\pi}{4} = \dfrac{1}{\sqrt{2}} ( = \dfrac{\sqrt{2}}{2}) \,\, [2]


7.for the first part you just substitute f(x) in wherever there is an x in f(x) [2][br]ifyoureallywanttoseeitreplytothis[br]forthesecondpart,Ididntknowthisasanactualrule,but:[br]f1(x)=f(x)[1][br]sub(x)intog(x),provethatg(x)=g(x),easy.[2][br]g(x)hasalineofsymmetryintheyaxis/isreflectedintheyaxisowtte[1]7. \,\, \mathrm{- for \ the \ first \ part \ you \ just \ substitute \ f(x) \ in \ wherever \ there \ is \ an \ x \ in \ f(x) \ [2]}[br]\mathrm{- if you really want to see it reply to this}[br]\mathrm{- for the second part, I didn't know this as an actual rule, but:}[br]f^{-1}(x) = f(x) \,\, [1][br]\mathrm{- sub (-x) into g(x), prove that g(x) = g(-x), easy. [2]}[br]\mathrm{- g(x) has a line of symmetry in the y-axis/is reflected in the y-axis owtte [1]}


8.f(x)=(x2)2x=x24x+4x[br]f(x)=x4+4x1[br]noquotientruleforme,thanks[br]f(x)=14x2=14x2[2][br]f(x)=8x3=8x3[2][br]solveforQ:[br]0=14x2[br]4x2=1[br]4=x2[br]x=±2[br]x=+2issolutionforP[br]x=2forQ[br]f(2)=8[br]Q(2,8)[2][br]f(2)=1<0soQisamaximum[1]8. \,\, f(x) = \dfrac{(x - 2)^2}{x} = \dfrac{x^2 - 4x + 4}{x}[br]f(x) = x - 4 + 4x^{-1}[br]\mathrm{- no quotient rule for me, thanks}[br]f'(x) = 1 - 4x^{-2} = 1 - \dfrac{4}{x^2} \,\, [2][br]f''(x) = 8x^{-3} = \dfrac{8}{x^3} \,\, [2][br]\mathrm{- solve for Q:}[br]0 = 1 - \dfrac{4}{x^2}[br]\dfrac{4}{x^2} = 1[br]4 = x^2[br]x = \pm 2[br]x = +2 \, \mathrm{is solution for P}[br]x = -2 \, \mathrm{for Q}[br]f(-2) = -8[br]Q(-2, -8) \,\, [2][br]f''(-2) = -1<0 \, \mathrm{so Q is a maximum} \,\, [1]

 verify is simple [2][br]the next part can be done two ways...[br]rectangleintegral:[br]A=1×314f(x)dx[br]orasanintegral,topcurvebottomcurve:[br]A=141f(x)dx[br]followeitherthrough[br]theintegrationiseasyusingtheexpansionoff(x)[br]A=1524ln4[4][br]nextpart...[br]g(x)=f(x+1)1qed.[3][br]03g(x)dx=4ln4152[br]=[youranswerfrombefore][1][br]I cant really say what the words for this answer are[1]\mathrm{- \ verify \ is \ simple \ [2]}[br]\mathrm{- the \ next \ part \ can \ be \ done \ two \ ways...}[br]\mathrm{- rectangle - integral:}[br]\displaystyle A = 1 \times 3 - \int ^4 _1 f(x) \, dx[br]\mathrm{- or as an integral, top curve - bottom curve:}[br]\displaystyle A = \int ^4 _1 1 - f(x) \, dx[br]\mathrm{- follow either through}[br]\mathrm{- the integration is easy using the expansion of f(x)}[br]A = \dfrac{15}{2} - 4 \ln 4 \,\, [4][br]\mathrm{- next part...}[br]g(x) = f(x + 1) - 1 \, qed. \,\, [3][br]\displaystyle \int ^3 _0 g(x) \, dx = 4 \ln4 - \dfrac{15}{2}[br]= - \mathrm{[your answer from before]} \,\, [1][br]\mathrm{- I \ can't \ really \ say \ what \ the \ words \ for \ this \ answer \ are} \,\, [1]


9.f(x)=(ex2)21[br]0=(ex2)21[br]1=(ex2)2[br]ex2=±1[br]ex=1,3(ln1 is 0 which is for O)[br]x=ln3[2][br]f(x)=2ex(ex2)[br]0=2ex(ex2)[br]ex=2[br]x=ln2[3][br]f(ln2)=1[1][br]Q(ln2,1)[br]asIsaidearlier,itwantstheenclosedarea...[br]0ln3(ex2)21dx[br]=0ln3e2x4ex+3dx[br]followthrough[4][br]A=3ln34[1]9. \,\, f(x) = (e^x - 2)^2 - 1[br]0 = (e^x - 2)^2 - 1[br]1 = (e^x - 2)^2[br]e^x - 2 = \pm 1[br]e^x = 1, 3 \,\, \mathrm{(ln1 \ is \ 0 \ which \ is \ for \ O)}[br]x = \ln 3 \,\, [2][br]f'(x) = 2e^{x} (e^x - 2)[br]0 = 2e^{x} (e^x - 2)[br]e^x = 2[br]x = \ln 2 \,\, [3][br]f(\ln 2) = -1 \,\, [1][br]Q(\ln 2, -1)[br]\mathrm{- as I said earlier, it wants the 'enclosed' area...}[br]\displaystyle \int ^{\ln 3} _0 (e^x - 2)^2 - 1 \, dx[br]\displaystyle= \int ^{\ln 3} _0 e^{2x} - 4e^{x} + 3 \, dx[br]\mathrm{- follow through [4]}[br]A = 3 \ln 3 - 4 \,\, [1]

 swap y and x and rearrange etc[br]f1(x)=ln(x+1+2)[3][br]domain:x1[1][br]range:f1(x)ln2[1][br]graphisreflectioniny=x[2][br]startsat(1,ln2)interceptatln3,thencurve[br]shouldcrosswithf(x)aty=x\mathrm{- \ swap \ y \ and \ x \ and \ rearrange \ etc}[br]f^{-1}(x) = \ln {( \sqrt {x + 1} + 2)} \,\, [3][br]domain: \, x \geq -1 \,\, [1][br]range: \, f^{-1}(x) \geq \ln 2 \,\, [1][br]\mathrm{- graph is reflection in y = x [2]}[br]\mathrm{- starts at (-1, ln 2) intercept at ln3, then curve}[br]\mathrm{- should cross with f(x) at y = x}


Anything I missed or got wrong just ask. If you think it would be marked differently then say so too.




Hey I wanted to ask if you have the MEI M1 June 2015 paper as I need it for revision. Thanks

Quick Reply

Latest

Trending

Trending