The Student Room Group

STEP Maths I, II, III 1989 solutions

Scroll to see replies

1989 STEP I Question 13.

Resolving vertically Ncosϕ+Fsinϕ=MG\text{Resolving vertically }N\cos\phi+F\sin\phi=MG
Resolving horizontally R+Nsinϕ=Fcosϕ\text{Resolving horizontally }R+N\sin\phi=F\cos\phi
Taking moments about foot of ladder \text{Taking moments about foot of ladder }
2aRcosθ=aMsinθR=Mgtanθ22aR\cos\theta=aM\sin\theta \Rightarrow R=\dfrac{Mg\tan\theta}{2}
So FcosϕNsinϕ=Mgtanθ2\text{So }F\cos\phi-N\sin\phi=\dfrac{Mg\tan\theta}{2}
and Ncosϕ+Fsinϕ=Mg so eliminating R\text{and }N\cos\phi+F\sin\phi=Mg \text{ so eliminating }R
F=Mg2(tanθcosϕ+2sinϕ)F=\dfrac{Mg}{2}\left(\tan\theta\cos\phi+2\sin\phi\right)
i.e. F=Mg(sinϕ+tanθcosϕ2) and \text{i.e. }F=Mg\left(\sin\phi+\dfrac{ \tan\theta\cos\phi}{2}\right) \text{ and }
N=MgMg(sinϕ+tanθcosϕ2)sinϕcosϕN=\dfrac{Mg-Mg\left(\sin\phi+\dfrac{\tan \theta \cos\phi}{2}\right)\sin\phi}{cos\phi}
=Mg1sin2ϕtanθcosϕsinϕ2cosϕ=Mg(cosϕtanθsinϕ2) as required=Mg\dfrac{1-\sin^2\phi-\dfrac{\tan \theta\cos \phi\sin \phi}{2}}{\cos\phi}=Mg\left(\cos\phi-\dfrac{\tan\theta\sin\phi}{2} \right) \text{ as required}
ϕ=45 and μ=2 so\phi=45^\circ \text{ and }\mu=2\text{ so}
FμNMg(sinϕ+tanθcosϕ2)2Mg(cosϕtanθsinϕ2)F\leq\mu N\Rightarrow Mg\left(\sin \phi+\dfrac{\tan \theta\cos \phi}{2} \right)\leq2Mg\left(\cos\phi-\dfrac{\tan\theta\sin\phi}{2} \right)
sinϕ+tanθcosϕ22cosϕtanθsinϕ1+12tanθ\Rightarrow\sin\phi+\dfrac {\tan\theta\cos\phi}{2}\leq2\cos\phi-\tan\theta\sin\phi\Rightarrow1+ \dfrac{1}{2} \tan\theta2tanθ since sinϕ=cosϕ\leq2-\tan\theta\text{ since }\sin\phi=\cos\phi
i.e. 32tanθ1tanθ23 hence, largest value of θ is arctan23\text{i.e. }\dfrac{3}{2}\tan\theta\leq1 \Rightarrow\tan\theta\leq\dfrac{2}{3}\text{ hence, largest value of }\theta\text{ is }\arctan\dfrac{2}{3}
1989 STEP I Question 14

Pr(a seed falls on parkland) =01(12x8)dx=[x2x216]01=716\text{Pr(a seed falls on parkland) }=\int\limits_0^1\left(\frac{1}{2}-\frac{x}{8}\right)\text{d}x= \left[\frac{x}{2}-\frac{x^2}{16}\right]_0^1=\frac{7}{16}
Pr(a seed falls on farmland) =23(12x8)dx=(32916)(114)=316\text{Pr(a seed falls on farmland) }=\int_2^3\left(\frac{1}{2}-\frac{x}{8}\right)\text{d}x= \left(\frac{3}{2}-\frac{9}{16}\right)- \left(1-\frac{1}{4}\right)=\frac{3}{16}
Unparseable latex formula:

\text{so E[no. of seeds falling on parkland or farmland]}=96\tijmes\frac{10}{16}=60


so mean number of new fever trees each year is 60\text{so mean number of new fever trees each year is }60
Unparseable latex formula:

\text{(i) p.d.f. of }Y\text{ will be f}(y)=k\left(\frac{1}{2}-\frac{y}{8}\right)\text{ for }0\leqy\leq1 \text{ or }2\leqy\leq3 \text{ and 0 elsewhere}


Unparseable latex formula:

\text{so }k\int_0^1\left(\frac{1}{2}-\frac{y}{8}\right\text{d}y +k\int_2^3\left(\frac{1}{2}-\frac{y}{8}\right)\text{d}y=1 \Rightarrow k\left[\frac{y}{2}-\frac{y^2}{16}\right]_0^1+ k\left[\frac{y}{2}-\frac{y^2}{16}\right]_2^3=1


Unparseable latex formula:

\Rightarrow\left(\frac{1}{2}-\fracx{1}{16}+\frac{3}{2}-\frac{9}{16}-1+\frac{4}{16}\right)k=1 \Rightarrow \frac{5}{8} k=1 \Rightarrow k=\frac{8}{5}


p.d.f. Mof Y is thus f(y)=85(12y8) for 0y1 and 2y3,0 elsewhere\text{p.d.f. Mof }Y \text{ is thus f}(y)=\frac{8}{5}\left(\frac{1}{2}-\frac{y}{8}\right)\text { for }0\leq y\leq1 \text{ and }2\leq y\leq3, 0\text{ elsewhere}
 See attached diagram for sketch\text{ See attached diagram for sketch}
E[Y]=0185(12y8)dy+2385(12y8)dy=85[y24y324]01+85[y24y324]23 \text{E}[Y]=\int_0^1 \frac{8}{5}\left(\frac{1}{2}-\frac{y}{8}\right)\text{d}y+ \int_2^3\frac{8}{5}\left(\frac{1}{2}-\frac{y}{8}\right)\text{d}y= \frac{8}{5}\left[\frac{y^2}{4}-\frac{y^3}{24}\right]_0^1+\frac{8}{5}\left[\frac{y^2}{4}-\frac{y^3}{24}\right]_2^3
=85(14124+9427241+824)=85×1624=1615=\frac{8}{5}\left(\frac{1}{4}-\frac{1}{24}+\frac{9}{4}-\frac{27}{24}-1+\frac{8}{24}\right)=\frac{8}{5}\times\frac{16}{24}=\frac{16}{15}
(ii) E[Number of seeds falling on farmland] =96×316=18\text{(ii) E[Number of seeds falling on farmland] }=96\times\frac{3}{16}=18
so number of new fever trees on farmland is expected to be B(96,316)\text{so number of new fever trees on farmland is expected to be B}\left(96,\frac{3}{16}\right)
which we approximate by N(18,14.625)\text{which we approximate by N}(18,14.625)
Pr(23 or more new trees)=P(z22.51814.625)=P(z1.177)=0.12\text{Pr(23 or more new trees)}=\text{P}\left(z\geq\frac{22.5-18}{\sqrt{14.625}}\right)=\text{P}(z\geq1.177)=0.12
So there is reason to doubt that the ancient traditions have been followed properly\text {So there is reason to doubt that the ancient traditions have been followed properly}
1989 STEP I Question 15

Basic time on each route is \text{Basic time on each route is }
A;25 minutes B:20 minutes and D:10 minutesA;25\text{ minutes }B:20\text{ minutes and }D:10\text{ minutes}
Route A:Pr(X27)=1P(held up for less than 2 minutes) =0.8 \text{Route }A: Pr(X\geq27)=1-\text{P(held up for less than }2\text{ minutes) }=0.8
Route B:Pr(XZ27)=1P(I talk for less than 7 minutes )\text{Route }B: Pr(XZ\geq27)=1-\text{P(I talk for less than }7\text{ minutes )}
=1P(I talk to fewer than 3 friends )=1e44e442e42!=13e4=10.238=0.762=1-\text{P(I talk to fewer than 3 friends )}=1-e^{-4}-4e^{-4}-\frac{4^2e^{-4}}{2!}=1-3e^{-4}=1-0.238=0.762
Route D:Pr(X27)=P(fewer than 4 detours)\text{Route }D: Pr(X\geq27)=\text{P(fewer than 4 detours)}
=1(5(45)415+(45)5)=11280+102455=0.263=1-\left(5\left(\frac{4}{5} \right)^4\frac{1}{5}+\left(\frac{4}{5}\right)^5\right)=1-\frac{1280+1024}{5^5}=0.263
P(Route B more than 27 minutes)=P(Route B and more than 27 minutes)P(more than 27 minutes)\text{P(Route B }\mid \text{more than 27 minutes)}=\frac{\text{P(Route B and more than 27 minutes)}}{\text{P(more than 27 minutes)}}
=13×0.76213(0.8+0.762+0.263)=0.418=\frac{\frac{1}{3}\times0.762}{ \frac{1}{3}(0.8+0.762+0.263)}=0.418
(i)mean time by route A=25+5=30minutes(i) \text{mean time by route A}=25+5=30\text{minutes}
Unparseable latex formula:

\text{for route B}=20+3\times4=32\text{minutes }}


for route D, mean distance=2+4=6km so mean time=30 minutes \text{for route D, mean distance}=2+4=6\text{km so mean time}=30\text{ minutes }
so he should use route A or D\text{so he should use route A or D}
(ii)Probabilities for less than 32 minutes are (ii) \text{Probabilities for less than 32 minutes are }
A:0.7,B:Pr(I talk to fewer than 4 friends)=0.4335 andA:0.7, B:Pr\text{(I talk to fewer than 4 friends)}=0.4335\text{ and}
D:Pr(fewer than 5 diversions)=1(45)5=0.672D:Pr\text{(fewer than 5 diversions)}=1-\left(\frac{4}{5}\right)^5=0.672
so I should choose route A\text{so I should choose route A}
1989 STEP I Question 16

(i)If A guesses 1 then B wins £2 if he guesses 3 and loses £1 if he guesses 2 so he should guess 3 (i) \text{If A guesses 1 then B wins £2 if he guesses 3 and loses £1 if he guesses 2 so he should guess 3 }
If A guesses 2 then B wins £1 if he guesses 1 but loses £1 if he guesses 3 so he should guess 1  \text {If A guesses 2 then B wins £1 if he guesses 1 but loses £1 if he guesses 3 so he should guess 1 }
If A guesses 3 then B wins £1 if he guesses 2 but loses £2 if he guesses 1 so he should guess 2 \text{If A guesses 3 then B wins £1 if he guesses 2 but loses £2 if he guesses 1 so he should guess 2}
(ii)B’s return if A guesses 1 is £(2b3b2) If A guesses 2, it is £(b1b3)(ii) \text{B's return if A guesses 1 is £}(2b_3-b_2)\text{ If A guesses 2, it is £}(b_1-b_3)
 and ifA guesses 3 it is £(b22b1)\text{ and ifA guesses 3 it is £}(b_2-2b_1)
Unparseable latex formula:

\text{B's expected winnings are £}\left(\frac{1}{3}(2b\-3-b_2+b_1-b_3+b_2-2b_1)\right)=\frac{1}{3}(b_3-b_1)


Clearly his expected wnnings aremaximsed by taking b1b2=03=1\text{Clearly his expected wnnings aremaximsed by taking }b_1b_2=0 _3=1
(iii)A wins £2 with probability a3b1,£1 with probability a2b1+a1b2(iii)\text{A wins £2 with probability }a_3b_1,\text{£1 with probability }a_2b_1+a_1b_2
he loses £1 with probability a3b1+a1b3 and loses £2 with probabilitya1b3\text{he loses £1 with probability }a_3b_1+a_1b_3 \text{ and loses £2 with probability} a_1b_3
hence, A’s expected winnings are 2a3b1+a1b2+a2b3a3b2a2b12a1b3\text{hence, A's expected winnings are }2a_3b_1+a_1b_2+a_2b_3-a_3b_2a_2b_1-2a_1b_3
=(b22b3)a1+(b3b1)a2+(2b1b2)a3=(b_2-2b_3)a_1+(b_3-b_1)a_2+(2b_1-b_2)a_3
 so X=b22b3,Y=b3b1 and Z=2b1b2\text{ so }X=b_2-2b_3,Y=b_3-b_1\text{ and }Z=2b_1-b_2
For X,Y,Z to be non-negative we require b22b3,b3b1 and 2b1b2\text{For }X,Y,Z \text{ to be non-negative we require }b_2 \geq 2b_3,b_3 \geq b_1 \text{ and }2b_1 \geq b_2
2b1b2 and b22b3b1b3 but b3b1 so we must have b1=b32b_1 \geq b_2 \text{ and }b_2 \geq 2b_3 \Rightarrow b_1 \geq b_3 \text{ but } b_3 \geq b_1 \text{ so we must have }b_1=b_3
so we may take b1=b3=16 and b2=13\text{so we may take } b_1=b_3 = \frac{1}{6} \text{ and } b_2= \frac{1}{3}  when b1+b2+b3=1 and X,Y,Z are non-negative as required \text{ when }b_1+b_2+b_3=1 \text{ and }X,Y,Z \text{ are non-negative as required}
Whatever values of a1,a2,a3 are chosen, expected winnings are zero so he loses nothing in the long run\text{Whatever values of }a_1,a_2,a_3 \text{ are chosen, expected winnings are zero so he loses nothing in the long run}
The answer worked out nicely so I think this is correct, but I'd appreciate checking.

STEP II (A) -- Question 10
Rearranging:
ab=μvλu\mathbf{a} - \mathbf{b} = \mu v - \lambda u
Three cases:

no solutions

one solution

line of solutions (infinite)


There is a line of solution or no solution if v and u are parallel (no solution if ab\mathbf{a} - \mathbf{b} isn't parallel to v or u; infinite solutions otherwise.)

There is exactly one solution, then, if vtu\mathbf{v} \neq t\mathbf{u} for any scalar t and ab\mathbf{a} - \mathbf{b} lies in the plane described by μvλu\mu v - \lambda u for μ,λR\mu, \lambda \in \mathbb{R}.

For next part, label the equations (1) and (2). Multiply (1) by b:
bx+by+b2z=b2+2bbx + by + b^2z = b^2 + 2b
Subtracting:
z(b21)=b21z(b^2 - 1) = b^2 - 1
For b±1b \neq \pm 1, z=1z = 1. Substituting into (1):
x+y+b=b+2    x+y=2x + y + b = b + 2 \iff x + y = 2
Into (2):
b(x+y)+1=2b+1    b(x+y)=2bb(x + y) + 1 = 2b + 1 \iff b(x + y) = 2b
So if b±1b \neq \pm 1 there is a line of solutions z=1,x+y=2z = 1, x + y = 2.

If b=±1b = \pm 1, then for b=1b = 1:
(1): x+y+z=3x + y + z = 3
(2): x+y+z=3x + y + z = 3
which intersects in a plane, not a line, as the equations are identical.

If b=1b = -1:
x+yz=21x + y - z = 2 - 1
zxy=12z - x - y = 1 - 2
which are again linearly dependent, so intersect in a plane.

Hence b=1,b=1b = 1, b = -1 are the two values for which the planes do not intersect in a line.

Otherwise:
r=(111)+λ(110)r = \begin{pmatrix}{1 \\ 1 \\ 1}\end{pmatrix} + \lambda\begin{pmatrix}{1 \\ - 1 \\ 0}\end{pmatrix}

For the last part, note that the above line contains all possible points of intersection provided b±1b \neq \pm 1. Considering this case first, then want one point of intersection between the two lines. Letting:
a=(111),b=(00c),u=(110),v=(1d0)\mathbf{a} = \begin{pmatrix}{1 \\ 1 \\ 1}\end{pmatrix}, \mathbf{b} = \begin{pmatrix}{0 \\ 0 \\ c}\end{pmatrix}, \mathbf{u} = \begin{pmatrix}{1 \\ -1 \\ 0}\end{pmatrix}, \mathbf{v} = \begin{pmatrix}{1 \\ d \\ 0}\end{pmatrix}

Condition 1: utv\mathbf{u} \neq t\mathbf{v}. This is true iff. d1d \neq -1.

Condition 2: Assuming condition 1 holds, ab\mathbf{a} - \mathbf{b} must lie in the plane described by the linear combination of u\mathbf{u} and v\mathbf{v}. Considering:
λuμv=(λμλμd0)\lambda\mathbf{u} - \mu\mathbf{v} = \begin{pmatrix}{\lambda - \mu \\ -\lambda - \mu d \\ 0}\end{pmatrix}. As condition 1 holds (by assumption), the linear combination is the plane [latex]\begin{pmatrix}{x \\ y \\ 0}\end{pmatrix}, so condition 2 requires c=1c = 1.

So b±1,d1,c=1b \neq \pm 1, d \neq -1, c = 1 is one condition.

If b=±1b = \pm 1, then ()(*) describes the plane:
b = 1: x+y+z=3x + y + z = 3
or:
b = -1: x+yz=1x + y - z = 1
Condition for line intersecting a plane exactly once in three dimensions: direction vector does not lie in the plane.

Vector equation of plane for b = 1: r=(1+λ1λ+μ1+μ)r = \begin{pmatrix}{1 + \lambda \\ 1 - \lambda + \mu \\ 1 + \mu}\end{pmatrix}. Equate:
(1d0)=(λλ+μμ)\begin{pmatrix}{1 \\ d \\ 0}\end{pmatrix} = \begin{pmatrix}{\lambda \\ -\lambda + \mu \\ \mu}\end{pmatrix}.

Clearly μ=0\mu = 0; then solution only possible with λ=1,d=1\lambda = 1, d = -1.

Hence for b=1b = 1, intersects at one point iff. d1d \neq -1.

Working for b=1b = -1 proceeds similarly, and gives same result.

All cases now considered.
(edited 11 years ago)
Original post by squeezebox
STEP II Question 3

Regarding the sketch, I think the elipse becomes a vertical straight line from v = -1 to v = 1, and the hyperbola becomes the line v = 1.


I get the same result for x=0x = 0 but a different result for y=π2,0xay = \frac{\pi}{2}, 0 \leq x \leq a. My working:

Let y=π2y = \frac{\pi}{2}:
Unparseable latex formula:

u + iv = \frac{1}{2}\left(e^(i\frac{\pi}{2}e^x - e^{-x}e^{-i\frac{\pi}{2}}\right) = \frac{1}{2}\left(ie^x - e^{-x}(-i) = i\frac{e^x + e^{-x}}{2} = i\cosh x


Equating real and imaginary parts:
u=0,v=coshxu = 0, v = \cosh x for 0xa0 \leq x \leq a, so 1vcosha1 \leq v \leq \cosh a.

I'd appreciate if anyone can spot an error in my working, or say if they think it's okay?
Just collating a solution for STEP I Q1 I think Fahran was correct for one bit but not the second, so I'll post only the second.
Reply 127
Original post by *bobo*
Step III (2)

I'm confused by the last part of the question. You let the z axis be the vertical height relative to an origin on the ground. Then you said that when the seam is on the surface z=0, but since the surface is inclined I don't think that holds.
Reply 128
Since there is no solution for STEP 3 question 13 I will briefly outline mine:
Consider the 5 tensions acting on the particle as complex numbers and the displacement x relative to the origin as a complex number also. The Tension from each string is (a*e^i theta - x)*(Y/a) (theta being the angle of the hole through which the string comes relative to a fixed initial line), summing the tensions we find that, since the sum of e^i*theta (when theta= 0, 2pi/5, 4pi/5, 6pi/5,8pi/5 ) is 0 using geometric series, we find that total tension is just -(5Y/a) *x , so acceleration =-(5y/ma) *x, T=2pi root(ma/5Y).
For the second part the sum Tensions is the same as before but subtracting the old tension from A and adding the new one. So T=-(5Y/a)*x - Y/a(1-x)+kY/a(1-x), giving Total tension =-(Y/A)(4+k)x + C for some constant C.
so T'=2pi*root(ma/Y(4+k))
For T'=T/2 we have 4+k= 5*4, so k=16
Reply 129
Original post by Nick_
I'm confused by the last part of the question. You let the z axis be the vertical height relative to an origin on the ground. Then you said that when the seam is on the surface z=0, but since the surface is inclined I don't think that holds.


Is this the question about the coal seam? I don't think bobo's posted on here for a good few years now!

You might want to compare notes with

Original post by DJMayes
...


I think he was asking about this question recently, but no-one was brave enough to take it on :biggrin:
Reply 130
Original post by davros
Is this the question about the coal seam? I don't think bobo's posted on here for a good few years now!

You might want to compare notes with



I think he was asking about this question recently, but no-one was brave enough to take it on :biggrin:


It would be nice to see what someone else got because i'm not sure my method was sound. I defined the height of of plane as being relative to the other using the three points and found the relationship between x and y when that height=0. Gave an answer very quickly but I'm not entirely convinced that its a valid method.
Original post by Nick_
It would be nice to see what someone else got because i'm not sure my method was sound. I defined the height of of plane as being relative to the other using the three points and found the relationship between x and y when that height=0. Gave an answer very quickly but I'm not entirely convinced that its a valid method.


I hope we have the same answer.....
While I am looking at 1989 Step 3 here is what i hope to be a solution to q3
Reply 133
Original post by mikelbird
I hope we have the same answer.....


I don't keep my solutions so I can't remember if I got if mine was positive or negative but I definatelty remember getting (+ or -) arctan(30/31) as my final answer.
Just to add to our solutions....
and another one....
(edited 10 years ago)
I know there have been several comments about III Q8 but I still don't think the given answers are right. I have checked these against the initial conditions and whether they actually satisfy both equation, without finding an error. As my answer disagrees with all submitted so far I will give the working....
Reply 138
Does anyone has the solution for III, Q5?
Reply 139
Original post by *bobo*
STEP II (6) attached


I think this is a rotation of 2pi about the y-axis rather than the x-axis

Quick Reply

Latest

Trending

Trending