x

## Unlock these great extras with your FREE membership

• One-on-one advice about results day and Clearing
• Free access to our personal statement wizard
• Customise TSR to suit how you want to use it
 You are Here: Home

# differentiable function

Announcements Posted on
Find your uni forum to get talking to other applicants, existing students and your future course-mates 27-07-2015
1. 1.
Let
f(x) = 2x +3 x<=2
f(x) = x^2 - 2x + 7 x>2

Show that f'(x) exists at x=2, but f''(2) doesnt exist.

2.
Let f,g be functions s.t. the product h(x)=f(x)g(x) is differentiable at a. Does it follow that f and g are differentiable at a?
is it possible that only 1 of f and g are differentiable at a?

for 1. do u just diff once and show f'(2)=2 so it exists and f''(2)=0 so it doesnt exist?? if so then y is there a need for 2 functions wen we can fork it out from just the first.
2. 1) f'(x) = 2 (x<=2) ->f'(2) = 2
f'(x) = 2x - 2 (x>2) -> f'(2) = 2.
So f'(x) at x= 2 exists
f''(x)= 0 (x<=2)--> f''(2) = 0
f''(x) = 2 (x>2)-->f''(2) = 2 <> 0.
So f''(2) doesn't exist.
2. No, f and g may not be differentiable at a.
Yes (not so sure).
3. Suppose that f'(a) isnt defined, and g(a) = 0 then we have
h'(a) = f'(a)g(a) + f(a)g'(a) = f(a)g'(a) which is defined.
4. k i understand 1 but i dnt get numba 2
5. I just answered 2...
6. (Original post by JamesF)
I just answered 2...
But not enough, I think. What if both g and f are not differentiable? U just proved that 1 of them is differentiable.
7. It asks, does the differentiability of h(x) at a imply that both f(x) and g(x) are differentiable at a, and i showed that the answer is no.
It doesnt take much to extend the arguement to show that neither have to be differentiable at a.
If g(a) = f(a) = 0, then h'(a) is defined (and equals 0) and neither of f or g need be differentiable at a.
8. (Original post by JamesF)
It asks, does the differentiability of h(x) at a imply that both f(x) and g(x) are differentiable at a, and i showed that the answer is no.
It doesnt take much to extend the arguement to show that neither have to be differentiable at a.
If g(a) = f(a) = 0, then h'(a) is defined (and equals 0) and neither of f or g need be differentiable at a.
I might misunderstood the question. I thought it asked if h(x) = f(x).g(x), and was h(x) differentiable if only one of g(x) or f(x) was defined or none of them.
But ur answer for none of them, I think it's wrong. Let's consider this
f(x) = (x-1)^1/2 -> f(1) = 0, f'(1) is not defined.
g(x) = (x-1)^1/3 -> g(1) = 0, g'(1) is not defined.
h(x) = (x-1)^5/6 -> h'(x) = 5/6(x-1)^(-1/6) which is not defined at x = 1.
But quite similarly, ur answer is right if g(x) = (x-1)^2/3. I mean ur answer for neither of them is differentiable can't be generalization.
Updated: January 24, 2005
TSR Support Team

We have a brilliant team of more than 60 Support Team members looking after discussions on The Student Room, helping to make it a fun, safe and useful place to hang out.

This forum is supported by:
Poll
Results and Clearing

### Results are coming...

No sweat. Here's all you need to make sure you're ready

Study resources
x

# Think you'll be in clearing or adjustment?

## Hear direct from unis that want to talk to you

Get email alerts for university course places that match your subjects and grades. Just let us know what you're studying.

Reputation gems: You get these gems as you gain rep from other members for making good contributions and giving helpful advice.