The Student Room Group

2004 a STEP thread...

Scroll to see replies

snaptwig
..
Looks correct, given what you've posted; (I haven't done the actual question).
Reply 81
Original post by Daniel Freedman
STEP II, 2004, Question 5

Spoiler



How can we integrate a function of tt with respect to xx? Are we to assume that tt is a constant in this question, or does it not matter either way?
Reply 82
Original post by Brister
How can we integrate a function of tt with respect to xx? Are we to assume that tt is a constant in this question, or does it not matter either way?


The integration is with respect to x, so you treat t as a constant for the integration. The point is that whatever value of t you choose, the integral will define a fixed value as a result, so you have a perfectly good function.
Reply 83
Original post by davros
The integration is with respect to x, so you treat t as a constant for the integration. The point is that whatever value of t you choose, the integral will define a fixed value as a result, so you have a perfectly good function.


Thanks, that clears it up nicely :smile:
Reply 84
Original post by Daniel Freedman
STEP II, 2004, Question 10

Spoiler



I agree that the work done against friction by P and Q in the last part is 24J, but hasn't P only travelled 5 metres at t = 2? Together, P and Q cover a combined distance of 6 metres regardless, so the answer is 24J.
Original post by Oh I Really Don't Care
TEP III, Question 5

Spoiler



Should the second bracket of first line be Cos(a+b)?
Original post by chaosgod69
Should the second bracket of first line be Cos(a+b)?


Yes
Reply 87
Original post by brianeverit
2004 STEP I question 6

Let mid-points of BC,CA,AB be D,E,F respectively\text{Let mid-points of }BC,CA,AB \text{ be }D,E,F \text{ respectively}
with usual notation, mid-point of BC is d=12(b+c)\text{with usual notation, mid-point of }BC \text{ is } \mathbf{d}= \dfrac{1}{2}(\mathbf{b}+ \mathbf{c})
So vector equation of line Ad is r=a+λ(12(b+c)a)=(1λ)a+λ2(b+c) \text{So vector equation of line }Ad \text{ is } \mathbf{r}= \mathbf{a}+ \lambda \left( \dfrac{1}{2}( \mathbf{b}+ \mathbf{c})- \mathbf{a} \right)=(1- \lambda) \mathbf{a}+ \dfrac{\lambda}{2}( \mathbf{b}+ \mathbf{c})
similarly for BE we have r=(1μ)b+μ2(a+c)\text{similarly for }BE \text{ we have } \mathbf{r}=(1-\mu) \mathbf{b}+ \dfrac{\mu}{2}(\mathbf{a}+ \mathbf{c})
So at point of intersection we must have (1λ)a+λ2(b+c)=(1μ)b+μ2(a+c) \text{So at point of intersection we must have }(1- \lambda) \mathbf{a}+ \dfrac{\lambda}{2}( \mathbf{b}+ \mathbf{c})=(1- \mu) \mathbf{b}+ \dfrac{\mu}{2}( \mathbf{a}+ \mathbf{c})
equating coefficients of a,b and c we have (1λ)=μ2,λ2=(1μ) and λ2=μ2\text{equating coefficients of } \mathbf{a}, \mathbf{b} \text{ and } \mathbf{c} \text{ we have } (1-\lambda)= \dfrac{\mu}{2},\dfrac{\lambda}{2}=(1- \mu) \text{ and }\dfrac{\lambda}{2}= \dfrac{\mu}{2}
Fron whiuch we obtain λ=μ=23\text{Fron whiuch we obtain } \lambda= \mu = \dfrac{2}{3}
Hence, AD and BE meet at the point (23(p1+p2+p3),23(q1+q2+q3)) \text{Hence, }AD \text{ and }BE \text{ meet at the point }\left( \dfrac{2}{3}(p_1+p_2+p_3),\dfrac{2}{3}(q_1+q_2+q_3)\right)
CF wil have equation r=c+ν2(a+bc) and taking ν=23 gives the same pointCF \text{ wil have equation }\mathbf{r}=\mathbf{c}+ \dfrac{\nu}{2}( \mathbf{a}+ \mathbf{b}- \mathbf{c}) \text{ and taking } \nu= \dfrac{2}{3} \text{ gives the same point}
gradient of AH=q2+q3p2+p3 and gradient of BC=q3q2p3p2 \text{gradient of }AH= \dfrac{q_2+q_3}{p_2+p_3} \text{ and gradient of }BC= \dfrac{q_3-q_2}{p_3-p_2}
so, if they are perpendicular then (q2+q3p2+p30)(q3q2p3p2)=1 \text{so, if they are perpendicular then }\left( \dfrac{q_2+q_3}{p_2+p_30} \right) \left(\dfrac{q_3-q_2}{p_3-p_2} \right)=-1
(q2+q3)(q3q2)=(p2+p3)(p3p2)q32q22=p32p22p22+q22=p32+q32\Rightarrow (q_2+q_3)(q_3-q_2)=(p_2+p_3)(p_3-p_2) \Rightarrow q_3^2-q_2^2=p_3^2-p_2^2 \Rightarrow p_2^2+q_2^2=p_3^2+q_3^2
similarly, if BH and AC are at right angles then p12+q12=p32+q32 \text {similarly, if }BH \text{ and }AC \text{ are at right angles then }p_1^2+q_1^2=p_3^2+q_3^2
 and if both p22+q22=p32+q32 and p12+q12=p32+q32 then clearly p12+q12=p22+q22 \text{ and if both } p_2^2+q_2^2=p_3^2+q_3^2 \text{ and }p_1^2+q_1^2=p_3^2+q_3^2 \text{ then clearly }p_1^2+q_1^2=p_2^2+q_2^2
(q1+q2)(q2q1)=(p1+p2)(p2p1)(q1+q2p1+p2)(q2q1p2p1)=1CH is perpendicular to AB \Rightarrow (q_1+q_2)(q_2-q_1)=(p_1+p_2)(p_2-p_1) \Rightarrow \left( \dfrac{q_1+q_2}{p_1+p_2}\right) \left( \dfrac{q_2-q_1}{p_2-p_1} \right)=-1 \Rightarrow CH\text{ is perpendicular to }AB


Just to point out one minor mistake that the coordinates of the point of intersection should be ((p1+p2+p3)/2,(q1+q2+q3)/2)
Can somebody change it in the main text?
Original post by Rexsun
Just to point out one minor mistake that the coordinates of the point of intersection should be ((p1+p2+p3)/2,(q1+q2+q3)/2)
Can somebody change it in the main text?


Should actually be ((p1+p2+p3)/3,(q1+q2+q3)/3)
Changed in original post.
Original post by brianeverit
2004 STEP II question 13

She gains £1 on next draw if she draws another white and loses £n if she draws a red \text{She gains £1 on next draw if she draws another white and loses £}n \text{ if she draws a red}
so expected gain is 1×Pr(white drawn) n×Pr(red drawn) =bnrbnnrbn=bnrnrbn \text{so expected gain is }1\times Pr\text{(white drawn) }-n\times Pr\text{(red drawn) }=\dfrac{b-n-r}{b-n}- \dfrac{nr}{b-n}= \dfrac{b-n-r-nr}{b-n}
This is zero if bnrnr=0n=brr+1 \text{This is zero if }b-n-r-nr=0 \rightarrow n= \dfrac{b-r}{r+1}
with each subsequent throw, the probability of drawing a red increases \text{with each subsequent throw, the probability of drawing a red increases}
so expected gain de3creases and hence will become negative \text{so expected gain de3creases and hence will become negative}
So to maximise her expectation she should stop on the next throw \text{So to maximise her expectation she should stop on the next throw}
after the value found above i.e. when n= the integer part of brr+1+1 \text{after the value found above i.e. when }n= \text{ the integer part of } \dfrac{b-r}{r+1}+1
When b=2k say, and r=1 she should stop after drawing [2k12+1]=[k+12]=k=b2 balls \text{When }b=2k \text{ say, and }r=1 \text{ she should stop after drawing }\left[ \dfrac{2k-1}{2}+1 \right]=\left[k+ \dfrac{1}{2} \right]=k= \dfrac{b}{2} \text{ balls}
Pr(she draws b2 white balls and no red)=b1b×b2b1××bb2bb21=12 Pr \text{(she draws }\dfrac{b}{2} \text{ white balls and no red)}= \dfrac{b-1}{b} \times \dfrac{b-2}{b-1} \times \dots \times \dfrac{b- \frac{b}{2}}{b- \frac{b}{2}-1}= \dfrac{1}{2}
all other terms cancelling. So expected gain is £b2×12=£b4 \text{all other terms cancelling. So expected gain is £}\dfrac{b}{2} \times \dfrac{1}{2}=\text{£} \dfrac{b}{4}
Unparseable latex formula:

\text{Now suppose }b=2k+1, r=1 \text{ the critical value is now }\left[\dfrac{2k+1-1}{2} +1 \right]=k+1 \text{ i.e. }\left(\dfrac{1}2}(b+1)\right)


Pr(she draws12(b+1) white balls) is b+1b××b12b12b12b+12=12b12b=1212b Pr \text{(she draws} \dfrac{1}{2}(b+1) \text{ white balls) is }\dfrac{b+1}{b}\times \dots \times \dfrac{b-\frac{1}{2}b-\frac{1}{2}}{b-\frac{1}{2}b+\frac{1}{2}}=\dfrac{\frac{1}{2}b-\frac{1}{2}}{b}=\dfrac{1}{2}-\dfrac{1}{2b}
so excpected winnings in this case are (1212b)(12b+12)=(b1)(b+1)4b=b214b \text{so excpected winnings in this case are } \left(\dfrac{1}{2}-\dfrac{1}{2b}\right) \left( \dfrac{1}{2}b+ \dfrac{1}{2}\right)=\dfrac{(b-1)(b+1)}{4b}=\dfrac{b^2-1}{4b}


How come for the r = 1 case we do not take into account losses when calculating expectation? Surely at every turn there is a 1/b chance she could lose all her money up to that point?

Quick Reply

Latest

Trending

Trending