

## Answers to examination-style questions

| Answers |     |                                         | s                                                                                                                                                                                                                                                                            | Marks       | Examiner's tips                                                                                                                                                                      |
|---------|-----|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1       | (a) | (ii)                                    | the strong interaction the weak interaction the strong interaction                                                                                                                                                                                                           | 1<br>1<br>1 | Kaons are produced by the strong force, but they decay via the weak interaction.  Strangeness is sometimes conserved in the weak interaction, but not always.                        |
|         | (b) | (i)                                     | a <i>baryon</i> consists of 3 quarks<br>an <i>antibaryon</i> consists of 3 antiquarks<br>a <i>meson</i> consists of a quark +<br>antiquark                                                                                                                                   | 1<br>1<br>1 | The question is about <b>hadrons</b> , so you have to consider both baryons and mesons.                                                                                              |
|         |     | (ii)                                    | the charges of the 3 quarks are: $u: +\frac{2}{3}  d: -\frac{1}{3}  s: -\frac{1}{3}$ 2 of these must make a quark-antiquark combination with a charge of 1 a meson with a charge of +1 requires either (ud) or (us) a meson with a charge of -1 requires either (ud) or (us) | 1 1         | You have to look at how a quark-<br>antiquark combination can form a charge<br>of either +1 or -1 and thus produce a<br>charged meson. Only these four<br>arrangements are possible. |
| 2       | (a) | hadrons: p, $\overline{n}$ , $\pi^0$    |                                                                                                                                                                                                                                                                              | 1           | In all parts, you have to write down all the correct particles for the mark to be awarded.                                                                                           |
|         | (b) | leptons: $\nu_e$ , $e^+$ , $\mu^-$      |                                                                                                                                                                                                                                                                              | 1           |                                                                                                                                                                                      |
|         | (c) | antiparticles: $\overline{n}$ , $e^+$   |                                                                                                                                                                                                                                                                              | 1           |                                                                                                                                                                                      |
|         | (d) | ) charged particles: p, $e^+$ , $\mu^-$ |                                                                                                                                                                                                                                                                              | 1           |                                                                                                                                                                                      |
| 3       | (a) | (i)                                     | positron, neutron, neutrino and positiv pion                                                                                                                                                                                                                                 | e <b>2</b>  | The weak interaction acts on hadrons and on leptons when they decay. All 4 particles are required for 2 marks. You lose 1 mark for each error.                                       |
|         |     | (ii)                                    | electron, proton, negative muon                                                                                                                                                                                                                                              | 2           | Electromagnetic forces act only between charged particles. All 3 particles are required for 2 marks. You lose 1 mark for each error.                                                 |
|         | (b) | (i)                                     | $\mu^- \! \to e^- \! + \overline{\nu_e} + \nu_\mu$                                                                                                                                                                                                                           | 1           | You simply have to exchange the particles on the right hand side for their corresponding antiparticles.                                                                              |
|         |     | (ii)                                    | difference: muon has a much greater rest mass similarity: both are negatively charged or both are leptons                                                                                                                                                                    | 1<br>, 1    | The rest mass of the muon is over 200 times that of the electron. Either answer will score the mark.                                                                                 |



## Answers to examination-style questions

| Answers |     |                                                                                                                                                   | Marks       | Examiner's tips                                                                                                                 |
|---------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------|
| 4       | (a) | u d d                                                                                                                                             | 2           | An incorrect answer that showed 3 quarks (at least one u and one d) would gain 1 mark out of 2.                                 |
|         | (b) | baryon, hadron                                                                                                                                    | 2           | 1 mark for each                                                                                                                 |
| 5       | (a) | (i) meson (not muon)                                                                                                                              | 1           | The particle consisting of $\overline{u}d$ is a negative pion, $\pi^-$ . A muon is no longer regarded as a meson.               |
|         |     | (ii) $-1$ , or $-1.6 \times 10^{-19}$ C, or $-e$                                                                                                  | 1           | $\overline{u}$ has a charge of $-\frac{2}{3}$ e, and d has a charge of $-\frac{1}{3}$ e, giving a total of $-e$ .               |
|         |     | (iii) 0                                                                                                                                           | 1           | A meson is not a baryon.                                                                                                        |
|         | (b) | <i>baryon number</i> : $0 \rightarrow 0 + 0$ , so satisfied                                                                                       | 1           | All the particles in this interaction are                                                                                       |
|         |     | <i>lepton number</i> : $-1 \rightarrow -1 + 1$ , so <b>not</b> satisfied                                                                          | 1           | leptons. Lepton numbers are given in the Data Booklet. Note that lepton conservation                                            |
|         |     | charge: $+1 \rightarrow +1 + 0$ , so satisfied                                                                                                    | 1           | applies to each lepton family. The neutrino has no charge.                                                                      |
| 6       | (a) | three                                                                                                                                             | 1           | Don't be put off by the unfamiliar sigma particle; the question is about general properties. A baryon always contains 3 quarks. |
|         | (b) | weak interaction                                                                                                                                  | 1           | Strange particles always decay by the weak interaction.                                                                         |
|         | (c) | proton                                                                                                                                            | 1           | All the other baryons decay into protons. The proton is the only stable baryon.                                                 |
| 7       | (a) | hadrons experience the strong nuclear force (or they consist of quarks)                                                                           | e <b>1</b>  | The weak interaction acts on both leptons and hadrons when they decay, but leptons do not experience the strong force.          |
|         | (b) | subgroups: baryons and mesons<br>a baryon consists of three quarks<br>a meson is a quark-antiquark combination                                    | 1<br>1<br>1 | This part is testing factual knowledge alone. Particle physics contains a lot of facts.                                         |
|         | (c) | charge: $0+1 \rightarrow 1+0$ , so obeyed lepton number: $0+(-1) \rightarrow 0+(-1)$ , so obeyed baryon number: $1+0 \rightarrow 1+0$ , so obeyed | 1<br>1<br>1 | Lepton numbers are given in the Data Booklet. You have to know that $B=1$ for a hadron.                                         |



## Answers to examination-style questions

| Answers                                                                                                                                                                                                          | Marks                     | Examiner's tips                                                                                                                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8 contains two quarks $\overline{u}d$ $\overline{u}$ has charge of $-\frac{2}{3}$ e, and d has charge of $-\frac{1}{3}$ e so the charge of $\pi^-$ is $-1$ e                                                     | 1<br>1<br>e, 1            | The evidence is that this is a meson, and so a quark-antiquark combination. The charge of quarks is given in the Data Booklet.                                                                                                                                            |
| 9 (a) symbol for an electron antineutrino, i.e. (                                                                                                                                                                | v <sub>e</sub> ) <b>2</b> | The decay equation is similar to that for $\beta$ - decay. 1 mark would be awarded for <b>any</b> neutrino symbol.                                                                                                                                                        |
| (b) charge: $0 \to 1 + (-1) + 0$<br>baryon number: $1 \to 1 + 0 + 0$<br>lepton number: $0 \to 0 + 1 + (-1)$                                                                                                      | 1<br>1<br>1               | All three conservation laws are satisfied, so the decay is possible.                                                                                                                                                                                                      |
| (c) total kinetic energy required = $2 \times \text{rest}$<br>energy of a proton = $2 \times 938 = 1880 \text{ MeV}$<br>$E_{\text{K}}$ required by one proton = $\frac{1}{2} \times 1880$<br>= $940 \text{ MeV}$ | 1<br>V<br>1               | The reaction creates a proton and an antiproton, so the colliding particles need enough kinetic energy to create the total rest energies of these new particles.                                                                                                          |
| 10 (a) (i) antibaryon                                                                                                                                                                                            | 2                         | 1 mark would be awarded for baryon or hadron.                                                                                                                                                                                                                             |
| (ii) the neutral pion, $\pi^0$                                                                                                                                                                                   | 1                         | You need to learn facts like this.                                                                                                                                                                                                                                        |
| (b) (i) u s                                                                                                                                                                                                      | 2                         | Refer to the Data Booklet. A strangeness of +1 requires an strange antiquark, charge $+\frac{1}{3}$ e. The kaon's charge is +e, requiring the accompanying quark to be an up quark, charge $+\frac{2}{3}$ e. 1 mark would be awarded for any quark-antiquark combination. |
| (ii) weak interaction                                                                                                                                                                                            | 1                         | Strange particles, such as the kaon, decay via the weak interaction.                                                                                                                                                                                                      |
| (iii) $K^- \rightarrow \mu^- + \overline{\nu_\mu}$                                                                                                                                                               | 1                         | Just change the two particles on the right hand side to their corresponding antiparticles.                                                                                                                                                                                |
| <ul><li>(iv) leptons</li><li>(v) muon has a much greater mass</li></ul>                                                                                                                                          | 1<br>1                    | These parts again test your knowledge of the facts.                                                                                                                                                                                                                       |
| 11 (a) baryon number: $0+1 \rightarrow 1+0$ , so obeyed lepton number: $0+0 \rightarrow 0+0$ , so obeyed charge: $0+1 \rightarrow 0+1$ , so obeyed                                                               |                           | A kaon is a meson. Mesons are hadrons but they are not baryons. No leptons are involved in this process. $K^0$ is a neutral kaon, $\pi^+$ is a positive pion.                                                                                                             |



| AQA Physics A                                                              | Chapter 2  |                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Answers to examination-style questions                                     |            |                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| Answers                                                                    | Marks      | Marks Examiner's tips                                                                                                                                                                                                   |  |  |  |  |  |  |  |
| <b>(b)</b> $K^0$ : d $\overline{s}$                                        | 1          | Refer to the Data Booklet. A strangeness of +1 requires an strange antiquark, charge $+\frac{1}{3}$ e. The neutral kaon's charge is zero, requiring the accompanying quark to be a down quark, charge $-\frac{1}{3}$ e. |  |  |  |  |  |  |  |
| $\pi^+$ : u $\overline{\mathrm{d}}$                                        | 1          | A charge of +1e and a strangeness of 0 is<br>required from a quark-antiquark<br>combination. An up quark has charge<br>$+\frac{2}{3}$ e and a down antiquark $+\frac{1}{3}$ e.                                          |  |  |  |  |  |  |  |
| <i>p</i> : u u d                                                           | 1          | $\frac{2}{3}e + \frac{2}{3}e + (-\frac{1}{3}e) = +1e$ , as required for a proton.                                                                                                                                       |  |  |  |  |  |  |  |
| correct number of quarks and antiquarks in each of the above three answers | 1 <b>1</b> | This acts as a bonus mark if you get all three correct, but it can also be a consolation mark for those who get them almost correct.                                                                                    |  |  |  |  |  |  |  |