GCE

Physics A
Advanced Subsidiary GCE

Mark Scheme for January 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2011
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

Question			Expected Answers	M	Additional Guidance
1	a		$\begin{aligned} & \text { use of } \mathrm{R}=\rho \mathrm{l} / \mathrm{A} \\ & =2.4 \times 12 \times 10^{-3} / 9.0 \times 10^{-6} \\ & =3.2 \times 10^{3}(\Omega) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { M1 } \\ & \text { A0 } \end{aligned}$	
	b		$\begin{aligned} \mathrm{V}^{2} & =\mathrm{PR} \\ & =0.125 \times 3.2 \times 10^{3} \\ \mathrm{~V} & =20(\mathrm{~V}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { M1 } \\ & \text { A0 } \\ & \hline \end{aligned}$	allow $V=\sqrt{ }\left(0.125 \times 3.2 \times 10^{3}\right)$ allow substituting $\mathrm{V}=20$ to prove $\mathrm{P}=0.125 \mathrm{~W}$
	c	i	adding resistors in series and then in parallel to show that total resistance is $3.2 \mathrm{k} \Omega$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	do not allow any reference to values of V or P , etc in answer
		ii	p.d across each resistor is 20 V so power dissipated is 0.125 W	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	```accept P = 402}/3.2\textrm{k}=0.50\textrm{W so P per resistor = 0.50/4 = 0.125 W do not accept }\mp@subsup{P}{\mathrm{ total }}{}=0.50\textrm{W}\mathrm{ without proof - scores zero```
	d	i	$\begin{aligned} & \text { using } R_{X}=\rho \mathrm{l} / \mathrm{A} ; \mathrm{A} \rightarrow 4 \mathrm{~A} \text { and } \mathrm{I} \rightarrow 2 \mathrm{I} \\ & \mathrm{R}_{Y}=\rho 21 / 4 \mathrm{~A}=\rho \mathrm{l} / 2 \mathrm{~A}=\mathrm{R}_{X} / 2 \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	accept figures $24 \times 10^{-3} \mathrm{~m}$ and $36 \times 10^{-6} \mathrm{~m}^{2}$ to give $1.6 \times 10^{3} \Omega$
		ii	same current in X and Y (as in series) power dissipated is $I^{2} R$ or IV where $\mathrm{V}_{\mathrm{X}}=2 \mathrm{~V}_{\mathrm{Y}}$ so X has larger P (dissipation)	$\begin{aligned} & \mathrm{B} 1 \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	allow $P=V^{2} / R ; V_{X}=2 V_{Y}$ etc. allow 1 mark only for using $P=V^{2} / R$ or IV and V is larger across X (i.e. not quantitative) so X has larger P
			Total question 1	13	

Question			Expected Answers	M	Additional Guidance
2	a	i	ions	B1	
		ii	positive ions	B1	allow positive charges / cations
		iii	electrons	B1	
	b	i	the battery has an internal resistance/AW some of the emf is across the (internal) resistance (leaving a smaller p.d. across motor)	$\begin{aligned} & \mathrm{B} 1 \\ & \text { B1 } \end{aligned}$	accept connecting leads have resistance accept $V=E-$ Ir or 'lost volts'/p.d. across r
		ii	$\begin{aligned} & \hline \text { use } E=V+I r \\ & \text { giving } 12=8+40 r \\ & r=(12-8) / 40 \text { or } 4 / 40 \\ & =0.10 \Omega \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{M} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 0 \end{aligned}$	accept reverse solution, $0.10 \Omega \rightarrow 8 \mathrm{~V} \rightarrow 12 \mathrm{~V}$ substitution and or solution showing working
		iii	$\begin{aligned} & Q=I t=40 \times 1.2 \\ & I=48(C) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	
	C	I	The current heats the filament The resistance/resistivity (of the metal filament) increases (with temperature).	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	no mention of temperature increase or heating scores zero
		ii	4.5 to 8 A in each (parallel) arm or 9 to 16 A for both together needs to be great enough to cover initial surge/current or use antisurge fuses	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	no mark if fuse value outside range
		iii	e.g. the starter motor draws 40 A so would need a bigger fuse than headlamp circuit so need different fuses for different situations or if battery used for starter motor with lights on will need too large a fuse - damage occurs before fuse blows/AW	B1	accept headlamp circuit damaged before fuse blows if 40 A fuse only used or fuse blows in starter circuit if 10 A used, etc.
			Total question 2	15	

Question			Expected Answers	M	Additional Guidance
3					
	a	i	V $\mathrm{~J} \mathrm{C}^{-1}$ R $V \mathrm{~A}^{-1}$ P $\mathrm{J} \mathrm{s}^{-1}$ I $\mathrm{C} \mathrm{s}^{-1}$.	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	4 correct 3 marks; 2 correct 2 marks 1 correct 1 mark
	b	i	$\begin{array}{\|lrl} \hline \text { using } V_{\text {out }}=R_{2} /\left(R_{1}+R_{2}\right) V_{\text {in }}: & \text { alt: } 2.4=I \times 560 \\ V_{\text {out }}=3.6 \mathrm{~V} & \text { so } I=4.3 \mathrm{~mA} \\ 3.6=R_{2} /\left(560+R_{2}\right) 6 & & 3.6=1 R_{2} \\ & R_{2}=840(\Omega) & \\ \hline \end{array}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	accept $R_{2}=(3.6 / 2.4) \times 560$ or .2.4 $=560 /\left(560+R_{2}\right) 6$
		ii	$\mathrm{I}=4.3 \times 10^{-3}(\mathrm{~A})$	B1	accept $4.3 \mathrm{~m}(\mathrm{~A})$ or $3 / 700(\mathrm{~A})$ ecf (b)(i) i.e. $I=6 /\left(560+R_{2}\right)$
	C	i	$20 \pm 2\left({ }^{\circ} \mathrm{C}\right)$	B1	
		ii	$\mathrm{R}_{\text {Th }}$ will fall/ resistance will fall giving greater share of supply V across fixed R/AW causing the voltage across (fixed) R/voltmeter reading to rise	B1 B1 B1	accept explanation in terms of potential divider equation or current increases or current same in both resistors/resistors in series
		$\begin{aligned} & \hline \text { ii } \\ & \text { i } \end{aligned}$	$\Delta \mathrm{R}$ is large for small $\Delta \mathrm{T}$ at low temperatures/AW in terms of gradient so thermistor is better in circuit to control low temp, refrigerator	M2	accept sensitivity greater at low temperature or vice versa or ΔR is small for small ΔT at high temperatures scores 1 out of 2
			Total question 3	14	

Question			Expected Answers	M	Additional Guidance
6					
	a		an eV is the energy acquired by an electron accelerated/moves through a p.d. of 1 V $1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$	$\begin{array}{\|l} \hline \mathrm{B} 1 \\ \mathrm{~B} 1 \\ \hline \end{array}$	
	b	i	$\begin{aligned} & 300(\mathrm{eV}) \\ & 4.8 \times 10^{-17}(\mathrm{~J}) \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	1 mark if write correct answers on wrong lines ecf for (first answer) $\times 1.6 \times 10^{-19}$ e.g. 7.68×10^{-36} using 4.8×10^{-17}
		ii	$\begin{aligned} & 1 / 2 \mathrm{mv} v^{2}=4.8 \times 10^{-17} \Rightarrow v^{2}=9.6 \times 10^{-17} / 9.1 \times 10^{-31}\left(=1.06 \times 10^{14}\right) \\ & v=1.03 \times 10^{7}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \hline \end{array}$	allow 1 mark only for $v^{2}=2 \times \mathbf{b}(\mathbf{i}) / 9.1 \times 10^{-31}$ if b(i) incorrect allow $1.0 \times 10^{7}, 1 \times 10^{7}$ is not acceptable
	c	i	Electrons are observed to behave as waves/show wavelike properties where the electron wavelength depends on its speed/momentum	$\begin{array}{\|l} \hline \text { B1 } \\ \text { B1 } \\ \hline \end{array}$	accept by being diffracted (by a crystal lattice)/AW accept de Broglie eqn with m,v or p defined
		ii	$\begin{aligned} \lambda & =\mathrm{h} / \mathrm{mv}=6.63 \times 10^{-34} /\left(9.1 \times 10^{-31} \times 1.03 \times 10^{7}\right) \\ & =7.1 \times 10^{-11}(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	allow 1 mark for 3.9 or $4.0 \times 10^{-14}(\mathrm{~m})$ caused by subs m_{p} for m allow $7.3 \times 10^{-11}(\mathrm{~m})$
			Total question 6	10	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

