CZ JUNE 2010
1.

$$
y=3^{x}+2 x
$$

(a) Complete the table below, giving the values of y to 2 decimal places.

x	0	0.2	0.4	0.6	0.8	1
y	1	1.65	$\mathbf{2 . 3 5}$	$\mathbf{3 . 1 3}$	$\mathbf{4 . 0 1}$	5

(b) Use the trapezium rule, with all the values of y from your table, to find an approximate

$$
\begin{align*}
& \text { value for } \int_{0}^{1}\left(3^{x}+2 x\right) d x \tag{4}\\
& \simeq \frac{1}{2}(0.2)(1+5+2(1.65+2.35+3.13+4.01))=2.828
\end{align*}
$$

2.

$$
f(x)=3 x^{3}-5 x^{2}-58 x+40
$$

(a) Find the remainder when $\mathrm{f}(x)$ is divided by $(x-3)$.

Given that $(x-5)$ is a factor of $\mathrm{f}(x)$,
(b) find all the solutions of $\mathrm{f}(x)=0$.
a) $f(3)=3(3)^{3}-5(3)^{2}-58(3)+40=-98$
b)
$3 x^{2}+10 x-8$
$x\left[\left.\begin{array}{|c|c|c|}\hline 3 x^{3} & +10 x^{2} & -8 x \\ -5 & -15 x^{2} & -50 x \\ \hline\end{array} \right\rvert\,+40\right.$
$r=0 V$

$$
\begin{aligned}
&(x-5)\left(3 x^{2}+10 x-8\right)=(x-5)(3 x-2)(x+4) \\
& x=5 ; \frac{2}{3} ;-4
\end{aligned}
$$

3. $y=x^{2}-k \sqrt{ } x$, where k is a constant.
(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(b) Given that y is decreasing at $x=4$, find the set of possible values of k.
a) $y=x^{2}-u x^{\frac{1}{2}} \quad \frac{d y}{d x}=2 x-\frac{1}{2} u^{-\frac{1}{2}}=2 x-\frac{u}{2 \sqrt{x}}$
b) decreasing $\Rightarrow \frac{d y}{d x}<0$ when $x=4$

$$
8-\frac{u}{4}<0 \Rightarrow \frac{u}{4}>8 \Rightarrow x>32
$$

4. (a) Find the first 4 terms, in ascending powers of x, of the binomial expansion of $(1+a x)^{7}$, where a is a constant. Give each term in its simplest form.

Given that the coefficient of x^{2} in this expansion is 525,
(b) find the possible values of a.
a) $1+7(a x)+\frac{7 \times 6}{2}(a x)^{2}+\frac{7 \times 6 \times 5}{6}(a x)^{3}$

$$
1+7 a x+21 a^{2} x^{2}+35 a^{3} x^{3}
$$

b) $21 a^{2}=525 \Rightarrow a^{2}=25 \Rightarrow a=5 ;-5$
5. (a) Given that $5 \sin \theta=2 \cos \theta$, find the value of $\tan \theta$.
(b) Solve, for $0 \leqslant x<360^{\circ}$,

$$
5 \sin 2 x=2 \cos 2 x,
$$

giving your answers to 1 decimal place.
a) $\frac{\sin \theta}{\cos \theta}=\frac{2}{5} \Rightarrow \tan \theta=0.4$
b) $\tan 2 x=0.4 \Rightarrow 2 x=\tan ^{-1}(0.4)$

$$
\begin{aligned}
2 x & =21.8 ; 201.8 ; 381.8 ; 561.8 \\
x & =10.9 ; 100.9 ; 190.9 ; 280.9
\end{aligned}
$$

7. (a) Given that

$$
2 \log _{3}(x-5)-\log _{3}(2 x-13)=1
$$

show that $x^{2}-16 x+64=0$.
(b) Hence, or otherwise, solve $2 \log _{3}(x-5)-\log _{3}(2 x-13)=1$.
a) $\log _{3}\left(\frac{(x-5)^{2}}{2 x-13}\right)=1 \Rightarrow(x-5)^{2}=3(2 x-13)$

$$
x^{2}-10 x+25=6 x-39 \Rightarrow x^{2}-16 x+64=0
$$

00
b) $(x-8)^{2}=0 \Rightarrow x=8$
6.

Figure 1
Figure 1 shows the sector $O A B$ of a circle with centre O, radius 9 cm and angle 0.7 radians.
(a) Find the length of the arc $A B . \quad r \theta=9(0.7)=6.3 \mathrm{~cm}$
(b) Find the area of the sector $O A B \cdot \frac{1}{2} r^{2} \theta=\frac{1}{2}(9)^{2}(0.7)=28.35 \mathrm{~cm}^{2}$

The line $A C$ shown in Figure 1 is perpendicular to $O A$, and $O B C$ is a straight line.
(c) Find the length of $A C$, giving your answer to 2 decimal places.

The region H is bounded by the $\operatorname{arc} A B$ and the lines $A C$ and $C B$.
(d) Find the area of H, giving your answer to 2 decimal places.
c) $A C=9 \times \tan \left(0.7^{c}\right)=7.58 \mathrm{~cm}$
d) Area $H=\frac{1}{2}(7.58 \ldots)(9)-28.35=5.76 \mathrm{~cm}^{2}$
8.

Figure 2
Figure 2 shows a sketch of part of the curve C with equation

$$
y=x^{3}-10 x^{2}+k x,
$$

where k is a constant.
The point P on C is the maximum turning point.
Given that the x-coordinate of P is 2 ,
(a) show that $k=28$.

The line through P parallel to the x-axis cuts the y-axis at the point N. The region R is bounded by C, the y-axis and $P N$, as shown shaded in Figure 2.
(b) Use calculus to find the exact area of R.

$$
\begin{aligned}
& \text { a) } \frac{d y}{d x}=3 x^{2}-20 x+u(=0 \text { when } x=2) \\
& 12-40+u=0 \Rightarrow u=28 \\
& \text { b) } y=2^{3}-10(2)^{2}+28(2)=24 \quad P(2,24) \\
& R=\prod_{2} 24-\int_{0}^{2} x^{3}-10 x^{2}+28 x d x \\
& R=48-\left[\frac{1}{4} x^{4}-\frac{10}{3} x^{3}+14 x^{2}\right]_{0}^{2}=48-\left(\left(\frac{100}{3}\right)-(0)\right) \\
& R=\frac{44}{3} \text { units }^{2}
\end{aligned}
$$

9. The adult population of a town is 25000 at the end of Year 1 .

A model predicts that the adult population of the town will increase by 3% each year, forming a geometric sequence.
(a) Show that the predicted adult population at the end of Year 2 is 25750 .
(b) Write down the common ratio of the geometric sequence.

The model predicts that Year N will be the first year in which the adult population of the town exceeds 40000 .
(c) Show that

$$
\begin{equation*}
(N-1) \log 1.03>\log 1.6 \tag{3}
\end{equation*}
$$

(d) Find the value of N.

At the end of each year, each member of the adult population of the town will give $£ 1$ to a charity fund.

Assuming the population model,
(e) find the total amount that will be given to the charity fund for the 10 years from the end of Year 1 to the end of Year 10, giving your answer to the nearest $£ 1000$.
a) $3 \%=\frac{3}{100} \times 25000=E 750+3 \%=25000+750$ ± 25750
b) $r=1.03$
c)

$$
\begin{aligned}
& \text { c) } u_{N}=a r^{N-1}>40000 \Rightarrow 25000(1.03)^{N-1}>40000 \\
& \Rightarrow 1.03^{N-1}>1.6 \Rightarrow \log 1.03^{N-1}>\log 1 \cdot 6
\end{aligned}
$$

$\Rightarrow(N-1) \log 1.03>\log 1.6$ and.
e) $S_{10}=\frac{25000\left(1.03^{10}-1\right)}{1.03-1}=286596.98 \ldots$
d)

$$
\begin{aligned}
& \text { Since } \log 1.03>0 \Rightarrow N-1>\frac{\log 1.6}{\log 1.03} \\
& N-1>15.9 \Rightarrow N>16.9 \Rightarrow N=17
\end{aligned}
$$

10. The circle C has centre $A(2,1)$ and passes through the point $B(10,7)$.
(a) Find an equation for C.

The line l_{1} is the tangent to C at the point B.
(b) Find an equation for l_{1}.

The line l_{2} is parallel to l_{1} and passes through the mid-point of $A B$.
Given that l_{2} intersects C at the points P and Q,
(c) find the length of $P Q$, giving your answer in its simplest surd form.
a) radius $=\overrightarrow{A B} \quad A B^{2}=(10-2)^{2}+(7-1)^{2}=8^{2}+6^{2} \Rightarrow r=10$

$$
(x-2)^{2}+(y-1)^{2}=100
$$

b) li is peep to $\overrightarrow{A B} \quad M_{A B}=\frac{7-1}{10-2}=\frac{6}{8}=\frac{3}{4} \quad M_{l_{1}}=\frac{-4}{3}$

$$
y-7=-\frac{4}{3}(x-10) \Rightarrow 3 y-21=-4 x+40
$$

$4 x+3 y-61=0$

$$
\begin{aligned}
& M_{A B}=\left(\frac{10+2}{2}, \frac{177}{2}\right)=(0,4)=x \\
& P X^{2}=10^{2}-5^{2} \quad P Q=\sqrt{75}=5 \sqrt{3} \\
& \Rightarrow P Q=2 \times 5 \sqrt{3}=10 \sqrt{3}
\end{aligned}
$$

