- Mutationsframeshift
- Natural selection or allele of DRD4 receptor gene
- Why small population does not increase in size- carrying capacity, interspecific competition
- Species richness and evenness (brief)
- Reasons for conserving biological resources
- Sustainable timber production
- Plant responses-Abscisic acid and gibberellins
- Two commercial uses of plant growth substances

January 2011:

- Artificial selection in dairy cows
- Two techniques used in selective breeding
- Gene mutation definition
- Natural selection (brief)
- Lac operonregulatory gene and structural gene
- Outline function of lac operon
- Compare structure and function of the 3 types of musclevoluntary, involuntary and cardiac
- Structure of the brain (brief)
- Closely related

- Synoptic: hydrolysis definition
- Definition: primary succession
- Role of pioneer species
- Deflected succession
- How biomass changes during primary succession
- How ecosystems can be managed sustainably (timber production) (essay)

- discontinuous variation by reference to the number of genes which influence the variation
- Explain why variation is essential in selection
- Use the Hardy-Weinberg principle to calculate allele frequencies in populations
- Explain, with examples, how environmental factors can act as stabilising or evolutionary forces of natural selection
- Explain how genetic drift can cause changes in small populations
- Explain the role of isolating mechanisms in evolution of new species
- Biological species concept
- Phylogenetic species concept
- Compare and contrast artificial selection and natural selection (possible essay?)
- Outline differences between reproductive cloning and nonreproductive cloning
- Natural clones in plants- vegetative propagation
- Small scale plant cloning- grafting and cutting
- Describe production of artificial clones of plants from tissue culture (large scale)
- Advantages and disadvantages of plant cloning in agriculture
- Describe how animals can be cloned (possible

- species to humans
- Describe how activation of the fight or flight response affects voluntary, involuntary and cardiac muscle (essay)
- Net primary production in ecosystems
- How energy content can be measured (calorimeter)
- How the trophic level or a mammal affects food energy converted into biomass
- Standard growth curve of batch culture
- Evidence of secondary metabolite (brief)
- Importance of aseptic conditions
- Three physical factors that must be controlled in the fermenter- PH, temperature, oxygen concentration
- Enzyme definitions
- Describe that different genes can be found in different types of cell as they code for different functions
- Compare in vitro gene cloning (PCR) to in vivo gene cloning (essay)
- Ecology definitions
- Animal behaviour + examples: habituation, operant

- essay?)
- Explain why immobilised enzymes are used in large scale production
- Compare and contrast continuous and batch culture (possible essay?)
- Describe differences between primary and secondary metabolites
- Outline steps of sequencing genome of organism (possible essay?)
- Outline how gene sequencing allows for genome-wide comparisons of species and individuals
- Define: recombinant DNA
- Outline how DNA fragments can be separated by electrophoresis
- Describe how DNA probes can be used to identify fragments containing specific base sequences
- Outline PCR (possible essay?)
- Describe the advantage to microorganisms of the capacity to take up plasmid DNA from the environment
- Outline the process involved in genetic engineering of golden rice
- Outline how animals can be genetically engineered for xenotransplantation
- Explain the term gene therapy
- Differences between somatic cell gene

	1		
conditioning, social			therapy and germ line
behaviour in primates			cell gene therapy
and its importance			(possible essay?)
and its importance		•	Define biotic factor and
			abiotic factor
		•	Describe how
		•	
			distribution and
			abundance of
			organisms can be
			measured using line
			transects, belt
			transects, quadrats and
			point quadrats
			(possible essay?)
		•	Describe how
			microorganisms recycle
			_
			nitrogen + general
			nitrogen cycle as
			possible essay?
		•	Describe predator-prey
			relationships
		•	Explain interspecific
			and intraspecific
			competition
		•	Outline how human
			activities effect
			populations of plants
			and animals on
			Galapagos Islands
			(possible essay?)
		•	Different tropisms in
			plants- photo, chemo
			etc
		•	How hormones are
			used in leaf loss of
			deciduous plants
		•	Commercial uses of
		-	plant hormones
		_	Outline organisation of
		•	_
			nervous system- central
			and peripheral
			(possible essay?)
		•	Outline functions of the
			cerebrum, cerebellum,
			medulla oblongata and
			hypothalamus (possible
			essay?)
		•	Describe how co-
		-	ordinated movement
			requires action of
			skeletal muscles about

		joints, in reference to
		elbow joint
	•	Sliding filament model
		of muscle contraction
		(possible essay
		incorporating
		stimulating contraction
		with neuromuscular
		junction?)
	•	Outline role of ATP in
		muscular contraction,
		and how supply of ATP is maintained in
		muscles
		Explain advantages of
	•	innate behaviour
	•	Describe escape
		reflexes, taxes and
		kinases as examples of
		genetically- determined
		innate behaviours
	•	Describe imprinting,
		classical conditioning,
		latent and insight
		learning
	•	Describe how DRD4
		dopamine receptor
		may contribute to

understanding of human behaviour