General Certificate of Education (A-level) January 2011

Mathematics (Pilot)

XMCA2
(Specification 6360)
Core A2

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
रor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
$-x$ EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1	$\begin{gathered} 1+\frac{1}{2}(4 x)+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)(4 x)^{2}}{2!}+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)(4 x)^{3}}{3!} \\ (1+4 x)^{\frac{1}{2}}=1+2 x-2 x^{2}+4 x^{3} \ldots ; \quad a=2 ; b=-2, \\ c=4 \end{gathered}$	$\begin{gathered} \mathrm{B} 1 ; \mathrm{B} 1 \\ \mathrm{~B} 1 \end{gathered}$	3	Condone if simplified terms left in form of expansion. SC if $0 / 3$ award B1 for two correct ' x '-terms unsimplified
	Total		3	
2	$\begin{aligned} & x+1=3 x \Rightarrow x=\frac{1}{2} \\ & x+1=-3 x \\ & x=-\frac{1}{4} \end{aligned}$	B1 M1 A1	3	PI or method to solve $8 x^{2}-2 x-1=0$ OE OE
	Total		3	
3(a)	$\begin{array}{lrl} \hline x & y & \\ 0 & \ln 3 & =1.0986 \ldots \\ 0.5 & \ln 3.25 & =1.1786 \ldots \\ 1 & \ln 4 & =1.3862 \ldots \\ 1.5 & \ln 5.25 & =1.6582 \ldots \\ 2 & \ln 7 & =1.9459 \ldots \\ & & \\ \frac{1}{3} \times 0.5\{y(0)+y(2) & +4[y(0.5)+y(1.5)]+2 y(1)\} \\ \frac{1}{3} \times 0.5 \times 17.1646 \ldots & =2.86 \text { (to } 2 \text { d.p.) } \\ \int_{0}^{2} \ln \sqrt{x^{2}+3} \mathrm{~d} x & =\frac{1}{2} \times \int_{0}^{2} \ln \left(x^{2}+3\right) \mathrm{d} x \\ & & \approx \frac{1}{2} \times 2.86 \ldots=1.43 \ldots \end{array}$	B1 B1 M1 A1 M1 A1F	4 2	x values PI At least 4 correct y values PI; 'exact' or rounded or truncated to 2 dp . Use of Simpson's rule. Must be for odd number of x-vals from 0 CAO Must be 2.86 PI Ft on $0.5 \times$ c's " 2.86 " to 2 dp or better even for NMS SC If full SR then B1 for 1.43
	Total		6	
4(a)	$\begin{aligned} & 1=A(x+1)^{2}+B(2 x+1)(x+1)+C(2 x+1) \\ & x=-\frac{1}{2} \quad x=-1 \quad x^{2} \text { terms } 0=A+2 B \\ & A=4 \quad C=-1 \quad B=-2 \\ & \int\left(\frac{4}{2 x+1}-\frac{2}{x+1}-\frac{1}{(x+1)^{2}}\right) \mathrm{d} x \\ & =2 \ln (2 x+1) \quad-2 \ln (x+1) \\ & \quad+\frac{1}{x+1} \quad(+c) \end{aligned}$	M1 m1 A3;2,1F M1 A1F A1F A1F	4	PI Subst values of x or comparing coefficients PI Ft value of previous incorrect constant if used to find other(s) Use of (a) Ft on c's $A / 2$ ie $0.5 A \ln (2 x+1)$ Ft on c's B ie $B \ln (x+1)$ Ft on c's $-C$ ie $\frac{-C}{x+1}$
	Total		9	

XMCA2 (cont)

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments

\hline 5(a)

(b) \& \begin{tabular}{l}

$(-3,0)$ and $(0, \ln 4)$
$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{x+4}
$$

Gradient of given line $=\frac{1}{2}$

At $A, \frac{1}{x_{A}+4}=\frac{1}{2}$

x-coord of A is -2

So coords of A are $(-2, \ln 2)$

Eqn of tangent at $A: y-\ln 2=\frac{1}{2}(x+2)$

 \&

B1

B1;B1

M1

B1

M1

A1

A1

 \& 5 \&

Correct shape with graph crossing negative x-axis and positive y-axis only

Condone just values of intercepts marked on axes instead of coords. OE for $\ln 4$ eg $2 \ln 2$

Condone 1.38(6..) in place of $\ln 4$

$$
\text { Or } \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2}
$$

Equating c's $\frac{\mathrm{d} y}{\mathrm{~d} x}$ to c's const grad of line PI

$$
x_{A}=-2
$$

ACF. Condone 0.693 for $\ln 2$
\end{tabular}

\hline \& Total \& \& 8 \&

\hline 6(a)
(b)

(c) \& \begin{tabular}{l}
$$
\begin{aligned}
& R=\sqrt{6^{2}+(-8)^{2}} \quad(=10) \\
& \cos \alpha=\frac{6}{R}, \text { or } \sin \alpha=\frac{8}{R} \text { or } \tan \alpha=\frac{8}{6} \\
& \alpha=0.927 \ldots \text { and } R=10 \\
& \cos (\theta+\alpha)=\frac{5}{R} \\
& \cos (\theta+0.927 \ldots)=0.5 \Rightarrow \theta+0.927 \ldots= \pm 1.047 \ldots \\
& \theta=-1.9(74 \ldots) ; \quad \theta=-2.0 \text { (to } 2 \text { sf) } \\
& \theta=0.11(99 \ldots)=0.12 \text { (to } 2 \text { sf) } \\
& \frac{15}{6 \cos x-8 \sin x}=\frac{15}{R \cos (x+\alpha)}\left\{=\frac{15}{R} \sec (x+\alpha)\right\} \\
& \text { Translation } \\
& {\left[\begin{array}{c}
-0.927 \ldots \\
0
\end{array}\right]}
\end{aligned}
$$

Stretch, (I) parallel to y-axis, (II) scale factor 1.5 OE

 \&

B1

M1

A1

M1

m1

A1F

A1F

M1

E1

B1F

m1

A1F

 \& 38 \&

OE

Using (a)

$$
\theta+\alpha= \pm \cos ^{-1}(5 / R)
$$

Condone >2 sf. Ft on $-1.047-$ c's α

Condone >2 sf. Ft on $1.047-\mathrm{c}$'s α

Penalise extras inside the given interval

Using (a). PI Condone θ for x

Translation-transl.. or better but dep on no variables in the vector

Ft on c's α. Accept $\left[\begin{array}{c}-\alpha \\ 0\end{array}\right]$

'Stretch' with either (I) or (II) but dep on M. Accept ' $15 / R$ ' for ' 1.5 '

Complete description. Ft on c's R If >2 transformations, deduct 2 from any EBm and A marks awarded to \min of 0
\end{tabular}

\hline \& Total \& \& 12 \&

\hline
\end{tabular}

XMCA2 (cont)

Q	Solution	Marks	Total	Comments
7(a)	$\frac{\mathrm{d} N}{\mathrm{~d} t}=k N$	M1		$\frac{\mathrm{d} N}{\mathrm{~d} t} \text { seen }$
		A1		ACF
	$\int N^{-1} \mathrm{~d} N=\int k \mathrm{~d} t$	m1		Separating variables with intention to then integrate
	$\ln N=k t+c$	A1		Condone absence of $+c$ for this mark
	$\begin{aligned} & \ln \left(1.6 \times 10^{6}\right)=k \times 0+c \Rightarrow c=\ln \left(1.6 \times 10^{6}\right) \\ & \ln \left(\frac{N}{1.6 \times 10^{6}}\right)=k t \Rightarrow \frac{N}{1.6 \times 10^{6}}=\mathrm{e}^{k t} \end{aligned}$	m1		Substituting $N=1.6 \times 10^{6}$ (condone $\mathrm{N}=1.6$) and $t=0$ in an attempt to find c and $\ln p=q \Rightarrow p=\mathrm{e}^{q}$ applied at some stage in soln to (a)
	so $\quad N=1.6 \times 10^{6} \mathrm{e}^{k t}$	A1	6	CSO AG
(b)	$\ln \left(4 \times 10^{6}\right)=2.5 \mathrm{k}+\ln \left(1.6 \times 10^{6}\right)$	M1		Substituting $N=4 \times 10^{6}$ and $t=2.5$ in an attempt to find k.
	$k=\frac{1}{2.5} \ln \left(\frac{4}{1.6}\right)=\frac{\ln 2.5}{2.5} \quad(=0.366516 \ldots)$	A1		ACF
	$\ln \left(13 \times 10^{6}\right)=\frac{\ln 2.5}{2.5} \times t+\ln \left(1.6 \times 10^{6}\right)$	m1		Substituting $N=13 \times 10^{6}$ to reach a linear eqn with t as the only unknown
	$k t=\ln \left(\frac{13}{1.6}\right)=\ln 8.125=2.09(494 \ldots)$	A1		A correct numerical expression or value for $k t$ (PI)
	$t=\frac{2.5}{\ln 2.5} \times \ln \left(\frac{13}{1.6}\right)=\frac{2.09494 \ldots}{k}$			
	$t=5.7158 \ldots=5.72$ (to 3 sf)	A1	5	Condone > 3sf. Accept 5.71
				SC Substitution of $N=4$ and $N=13$ deduct maximum of 1 mark for MR.
	Total		11	

XMCA2 (cont)

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline 11(a) \& \begin{tabular}{l}
\[
\begin{aligned}
u \& =x \text { and } \frac{\mathrm{d} v}{\mathrm{~d} x}=\mathrm{e}^{-3 x} \\
\frac{\mathrm{~d} u}{\mathrm{~d} x} \& =1 \text { and } v=-\frac{1}{3} \mathrm{e}^{-3 x} \\
\ldots \ldots \& =-x \frac{1}{3} \mathrm{e}^{-3 x}-\int-\frac{1}{3} \mathrm{e}^{-3 x} \mathrm{~d} x \\
\& =-\frac{1}{3} x \mathrm{e}^{-3 x}-\frac{1}{9} \mathrm{e}^{-3 x}(+c)
\end{aligned}
\] \\
Let \(u=x^{2}+9\)
\[
\frac{\mathrm{d} u}{\mathrm{~d} x}=2 x
\]
\[
\int \frac{x^{3}}{\sqrt{x^{2}+9}} \mathrm{~d} x=\int \frac{1}{2} \times \frac{(u-9)}{\sqrt{u}} \mathrm{~d} u
\]
\[
\mathrm{I}=\frac{1}{2} \int\left(u^{0.5}-9 u^{-0.5}\right) \mathrm{d} u
\] \\
When \(x=4, u=25\) and when \(x=0, u=9\)
\[
\begin{aligned}
I \& =\frac{1}{2}\left[\frac{u^{1.5}}{1.5}-\frac{9 u^{0.5}}{0.5}\right]_{9}^{25} \\
\& =\frac{1}{2}\left\{\left(\frac{125}{1.5}-\frac{45}{0.5}\right)-\left(\frac{27}{1.5}-\frac{27}{0.5}\right)\right\} \\
\& =\frac{1}{2}\left(-6 \frac{2}{3}+36\right)=14 \frac{2}{3}
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
A1F \\
A1 \\
M1 \\
m1 \\
m1 \\
m1 \\
m1 \\
A1
\end{tabular} \& 4

6 \& | Attempt to use parts formula in the 'correct direction' |
| :--- |
| PI |
| ft on wrong integration of $\mathrm{e}^{-3 x}$ provided v is of the form $k \mathrm{e}^{-3 x}(k \neq \pm 1)$ |
| CSO (Condone absence of $+c$) |
| A relevant single substitution used ${ }^{\prime} \mathrm{d} u=2 x \mathrm{~d} x^{\prime} \mathrm{OE}$ |
| In terms of u only, must deal with all parts integrand and $\mathrm{d} x$; dep on prev 2 mks Condone no du provided not just $\mathrm{d} x$ missing |
| Integrand 'correct' form which can be integrated directly, dep on prev 3 mks |
| Following a correct integration, dealing correctly with correct limits, either for u or (after substituting back for x) for x Accept 14.6 or 14.7 or better provided full subst method seen and no obvious errors seen. |
| Altn substitution: $u^{2}=x^{2}+9 \text { so }{ }^{\prime} 2 u \mathrm{~d} u=2 x \mathrm{~d} x^{\prime} \text { OE }(\mathrm{M} 1 \mathrm{~m} 1)$ |
| leading to $\int \frac{\left(u^{2}-9\right) u}{u} \mathrm{~d} u(\mathrm{~m} 1)$ |
| leading to $\int\left(u^{2}-9\right) \mathrm{d} u(\mathrm{~m} 1)$ |

\hline \& Total \& \& 10 \&

\hline 12 \& \[
$$
\begin{aligned}
& V=\pi \int_{0}^{\frac{\pi}{4}} \tan ^{2} x \mathrm{~d} x \\
& =(\pi) \int_{0}^{\frac{\pi}{4}}\left(\sec ^{2} x-1\right) \mathrm{d} x \\
& =(\pi)[\tan x-x]_{0}^{\frac{\pi}{4}} \\
& =\pi\left(\tan \frac{\pi}{4}-\frac{\pi}{4}\right)=\pi\left(1-\frac{\pi}{4}\right)
\end{aligned}
$$

\] \& | B1 |
| :--- |
| M1 |
| B1 |
| A1 | \& 4 \& | Must be completely correct including $\mathrm{d} x$ seen on this line or next line |
| :--- |
| Explicitly seen using the identity |
| $1+\tan ^{2}(x)=\sec ^{2}(x)$ to simplify integrand |
| Terms inside [] |
| AG Be convinced |

\hline \& Total \& \& 4 \&

\hline
\end{tabular}

Q	Solution	Marks	Total	Comments
13(a)(i)	$\frac{x+1}{x-1}=\sqrt{x} ; \frac{(x+1)^{2}}{(x-1)^{2}}=x ; \quad(x+1)^{2}=x(x-1)^{2}$ $x^{2}+2 x+1=x^{3}-2 x^{2}+x ; \quad x^{3}=3 x^{2}+x+1$	M1 m1 m1		$\mathrm{f}(x)=\mathrm{g}(x)$ and either elim of $\sqrt{ }$ or elim of fraction or $(x-1)=(x+1) / \sqrt{x}$ Elim of both $\sqrt{ }$ and fraction or $(x-1)^{2}=x+2+(1 / x)$ Valid methods to penultimate stage
	Dividing each term by x^{2} gives $x=3+\frac{1}{x}+\frac{1}{x^{2}}$ So α satisfies the equation $x=3+\frac{1}{x}+\frac{1}{x^{2}}$	A1	4	CSO AG
(ii)	$x_{2}=3.444$	B1		AWRT 3.444. Condone exact value eg 31/9
	$x_{3}=3.375$	B1	2	CAO
(iii)	Let $\mathrm{p}(x)=3+\frac{1}{x}+\frac{1}{x^{2}}-x$			
	$\begin{aligned} & \mathrm{p}(3.3825)=0.0005(4 . .) \\ & \mathrm{p}(3.3835)=-0.0005(9 . .) \end{aligned}$	M1		Both p (3.3825) and $\mathrm{p}(3.3835)$ attempted OE or subst of these vals in given equation (a)(i)
	Since change of sign (and p is continuous close to α), α is 3.383 correct to 3 dp	A1	2	OE comparing sides of eqn. in (i) for the two values of x oe with a valid conclusion with explicit reference to 3.383
(b)(i)(ii)	(Range of f^{-1} is) $\mathrm{f}^{-1}(x)>1$ $\begin{array}{r} y=\mathrm{f}^{-1}(x) \Rightarrow \mathrm{f}(y)=x \\ y+1 \end{array}$	B1	1	Allow y for $\mathrm{f}^{-1}(x)$
	$\Rightarrow \frac{y+1}{y-1}=x$	M1		$x \leftrightarrow y$ at any stage
	$y+1=x y-x \Rightarrow y(x-1)=x+1$	m1		Into a form where just one step is required
	$\mathrm{f}^{-1}(x)=\frac{x+1}{x-1}$	A1	3	ACF [Accept y or f^{-1} for $\mathrm{f}^{-1}(x)$]
(c)(i)	$0<2 \theta<\frac{\pi}{2} \text { so } 0<\cos 2 \theta<1 \text { so } \frac{1}{\cos 2 \theta}>1 \text { ie } \sec 2 \theta>1$	E2,1,0	2	Graphical approach also valid within explanation
(ii)	$\operatorname{gf}(\sec 2 \theta)=g\left(\frac{\sec 2 \theta+1}{\sec 2 \theta-1}\right)=\sqrt{\frac{\sec 2 \theta+1}{\sec 2 \theta-1}}$	B1		PI
	$\begin{aligned} \sec 2 \theta=\frac{1}{\cos 2 \theta} ; \cos 2 \theta= & 2 \cos ^{2} \theta-1 \\ & \text { and } \cos 2 \theta=1-2 \sin ^{2} \theta \end{aligned}$	M1		All three identities attemptedcondone sign slips
	$\frac{\sec 2 \theta+1}{\sec 2 \theta-1}=\frac{1+\cos 2 \theta}{1-\cos 2 \theta}=\frac{1+2 \cos ^{2} \theta-1}{1-\left(1-2 \sin ^{2} \theta\right)}=\frac{\cos ^{2} \theta}{\sin ^{2} \theta}$	A1		
	$\operatorname{gf}(\sec 2 \theta)=\sqrt{\frac{\cos ^{2} \theta}{\sin ^{2} \theta}}=\cot \theta$	A1	4	CSO AG
	Total		18	

XMCA2 (cont)

