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Chapter 1

Fourier Methods

1.1 Learning Outcomes

To understand the concept of orthogonality of functions, with sine and cosine as particularly
important examples. To understand the concept of periodic functions. To be able to rep-
resent periodic functions in terms of a Fourier series of sine and cosine functions. The case
of discontinuous functions. Parseval’s theorem for Fourier series and it’s relation to power
spectra. To understand the relationship between Fourier series and Fourier transforms. To
know the definition and fundamental properties of the Fourier transform. The Parseval and
convolution theorems for Fourier transforms. Application of Fourier methods to diffraction
and differential equations.

1.2 Further Reading

It is important that you get used to reading material beyond the lecture notes. This has a
number of benefits: it allows you to explore material that goes beyond the core concepts in-
cluded here; it encourages you to develop your skills in assimilating academic literature; seeing
a subject presented in a different ways by different authors can enhance your understanding.

1. Riley, Hobson & Bence, Mathematical Methods for Physics and Engineering, 3rd Ed.,
Chapter 12: Fourier Series; Chapter 13: Integral Transforms, Section 1: Fourier Trans-
forms.

2. Arfken & Weber, Mathematical Methods for Physicists, 4th Ed., Chapter 14: Fourier
Series; Chapter 15: Integral Transforms, Sections 1 to 5.

3. Boas, Mathematical Methods in the Physical Sciences, 2nd Ed., Chapter 7: Fourier
Series; Chapter 15: Integral Transforms, Sections 4, 5 and 7.

1
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1.3 Introduction

You are familiar with the concept that any vector v may be represented as a linear combi-
nation of a set of suitable basis vectors, e.g., the orthonormal Cartesian unit vectors in three
dimensions: {êi}:

v =
3∑

i=1

aiêi.

The same is true of functions. Functions may be thought of as generalised, infinite dimensional
vectors that live in an infinite-dimensional vector-space (also called a Hilbert space1). If one
can find a suitable basis of functions {Bi(x)} for a given Hilbert space, then any function
f(x) in that space may be expressed as a linear combination:

f(x) =
∑

i

aiBi(x). (1.1)

One important class of functions is that of periodic functions, and a particularly useful set
of basis functions for the Hilbert space of periodic functions is that of sines and cosines, also
known as the Fourier2 basis. If {Bi(x)} is a Fourier basis, then an expansion such as that of
Eq. 1.1 is called a Fourier series.

Fourier series (and transforms) are very important in science and engineering and have appli-
cations in signal processing and electronics, solving differential equations, image processing
and image enhancement, diffraction and interferometry, and much more besides.

1.4 Orthogonality of Functions

1.4.1 Recap of Vectors

Two vectors a and b are said to be orthogonal if their inner product3 is zero: a · b = 0.
Expanding a and b in terms of orthonormal Cartesian basis vectors,

a =
3∑

i=1

aiêi b =
3∑

i=1

biêi

1David Hilbert (1862-1943), German mathematician. Developed much of the mathematical foundation for
both general relativity and quantum mechanics.

2Jean Baptiste Joseph Fourier (1768–1830), French mathematician and physicist. Fourier also discovered
the greenhouse effect.

3Also known as scalar product or dot product.
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and using the usual orthonormality relations êi · êj = δij ,4 we find that5

a · b =
3∑

i,j=1

a∗i bj êi · êj

=
3∑

i,j=1

a∗i bjδij

=
3∑

i=1

a∗i bi.

So, the condition for a and b to be mutually orthogonal is

a · b =
∑3

i=1 a∗i bi = 0

This was in three dimensions and the extension to N -dimensional vectors is trivial:

a · b =
∑N

i=1 a∗i bi = 0

1.4.2 Extension to Functions

Since functions may be thought of as infinite dimensional vectors, the concept of orthogonality
can be applied to functions as well. The inner product of two functions f(x) and g(x) is defined
as6

⟨f |g⟩ ≡
∫ b

a
f∗(x)g(x) dx

Two functions f(x) and g(x) are said to be orthogonal on the interval [a, b] if their inner
product is zero: ⟨f |g⟩ = 0.

4Recall the Krönecker delta is the suffix notation analogue of the identity matrix, in other words, δij =
ȷ

1 if i = j
0 if i ̸= j
5The asterisk ∗ denotes the complex conjugate. You don’t need to worry about it when dealing with vectors

whose components ai are real, but this is not always the case.
6The complex conjugate ensures that ⟨f |f⟩ ≥ 0 for complex valued functions.
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Exercise: Sketch the polynomials given by

P1(x) = x P2(x) =
3x2 − 1

2
P3(x) =

5x3 − 3x

2

and show that they are mutually orthogonal on the interval [−1, 1].

1.4.3 The Fourier Basis

Consider the set of functions sn(x) = sin(nπx
L ), n ∈ {1, 2, . . .}. They have a common period

of 2L, i.e., sn(x + 2L) = sn(x).

Exercise: Sketch s1, s2 and s3 in the interval x ∈ [−L,L].

The functions {sn(x)} form a mutually orthogonal set over any interval of length 2L, i.e.,
⟨sm|sn⟩ ∝ δmn.

Proof: Consider the symmetric interval [−L,L].

⟨sm|sn⟩ =
∫ L

−L
s∗m(x)sn(x) dx

=
∫ L

−L
sin(mπx

L ) sin(nπx
L ) dx

=
1
2

∫ L

−L

[
cos( (m−n)πx

L ) − cos( (m+n)πx
L )

]
dx

=
1
2

[
L

π(m − n)
sin( (m−n)πx

L ) − L

π(m + n)
sin( (m+n)πx

L )
]L

−L

m ̸= n

= 0 since sin pπ = 0 for any integer p

For the case of m = n, we have

⟨sn|sn⟩ =
∫ L

−L
s∗n(x)sn(x) dx

=
∫ L

−L
sin2(nπx

L ) dx

=
1
2

∫ L

−L

[
1 − cos(2nπx

L )
]
dx

=
1
2

[
x − L

2nπ
sin(2nπx

L )
]L

−L

=
1
2
· 2L = L
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Therefore, we have

∫ L

−L
sin(mπx

L ) sin(nπx
L ) dx =

{
0 if m ̸= n
L if m = n ̸= 0

(1.2)

In a similar way, the set of functions cn(x) = cos(nπx
L ), n ∈ {0, 1, . . .}, can be shown to be

mutually orthogonal on any interval of length 2L, e.g.,

∫ L

−L
cos(mπx

L ) cos(nπx
L ) dx =


0 if m ̸= n
L if m = n ̸= 0
2L if m = n = 0

(1.3)

It is also easy to show that cn(x) and sn(x) are orthogonal to eachother on any interval of
length 2L: ∫ L

−L
cos(mπx

L ) sin(nπx
L ) dx = 0 ∀ m,n (1.4)

The orthogonality relations of equations 1.2, 1.3 and 1.4 form the fundamental basis of Fourier
theory7. They may be written more concisely as

⟨sm|sn⟩ = ⟨cm|cn⟩ = Lδmn m,n ̸= 0

⟨c0|c0⟩ = 2L

⟨cm|sn⟩ = 0 ∀ m,n

The set of functions comprising sn(x) (n ∈ {1, 2, . . .}) and cn(x) (n ∈ {0, 1, . . .}) form what
is known as the Fourier basis, an orthogonal basis for the Hilbert space of functions that are
periodic (in this case with period 2L).

This means that, in the same way that any vector may be expressed as a linear combination
of basis vectors, any periodic function f(x) = f(x + 2L) may be represented as a linear
combination of sines and cosines with the same periodicity,

f(x) =
∞∑

n=0

an cos(nπx
L ) +

∞∑
n=1

bn sin(nπx
L ).

The expression above is known as a Fourier series, and Fourier analysis is all about finding
the expansion coefficients {an} and {bn}.

7Similar orthogonality relations exist for the complex Fourier basis functions einπx/L, n ∈ {−∞, . . . ,∞}.
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1.5 Fourier Series

A periodic function may be written as a Fourier series, i.e., as a sum of sinusoidal harmonics
with the same periodicity.

Consider a triangular wave f(t), periodic on the interval t ∈ [0, T ]

f(t) =


4t/T t ∈ [0, T/4]

2(1 − 2t/T ) t ∈ [T/4, 3T/4]
4(t/T − 1) t ∈ [3T/4, T ]

Its Fourier series is given by8

f(t) =
∞∑

n=1

8 · (−1)n+1

(2n − 1)2π2
sin(2(2n−1)πt

T ). (1.5)

Writing out the first few terms explicitly:

f(t) =
8
π2

(
sin(2πt

T ) − 1
9

sin(6πt
T ) +

1
25

sin(10πt
T ) − 1

49
sin(14πt

T ) + . . .

)

Figure 1.1 shows that by including more and more terms in the Fourier series, successively
better approximations to f(t) are obtained.

The coefficients of the expansion in Eqn. 1.5 are known as the Fourier coefficients and can
be found by orthogonality.

1.5.1 Determining Fourier Coefficients

Recall that the components of a vector can be determined by orthogonality of the basis
vectors. For example, let

v = v1ê1 + v2ê2 + v3ê3.

Then, taking the inner (i.e., scalar) product of both sides of the above expression with ê1 and
using the orthonormality of the {êi} we obtain

v · ê1 = v1ê1 · ê1 + v2ê2 · ê1 + v3ê3 · ê1

= v1.

The general result is that vi = v · êi.

8We shall see in due course how to calculate Fourier series explicitly.
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Figure 1.1: Triangular wave f(t) (with T = 1) along with it’s Fourier series representations consisting
of 1, 2, 3, and 4 terms.

Now consider f(x) = f(x + 2L), a function that is periodic with a period 2L. It may be
expressed as a Fourier series in terms of sines and cosines with the same periodicity, namely

f(x) =
∞∑

n=0

an cos(nπx
L ) +

∞∑
n=1

bn sin(nπx
L )

= a0 +
∞∑

n=1

an cos(nπx
L ) +

∞∑
n=1

bn sin(nπx
L ), (1.6)

where the n = 0 term has been explicitly separated from the first summation. The constants
{an} and {bn} are the Fourier coefficients and are analogous to the components of a vector.
By analogy, the coefficients may be found by taking the inner product of f(x) with the Fourier
basis functions and using the orthogonality relations of Eqns. 1.2, 1.3 and 1.4:

⟨f |sm⟩ = a0 ⟨c0|sm⟩︸ ︷︷ ︸
0

+
∞∑

n=1

an ⟨cn|sm⟩︸ ︷︷ ︸
0

+
∞∑

n=1

bn ⟨sn|sm⟩︸ ︷︷ ︸
Lδnm

= Lbm.

Where we have used the shorthand notation c0(x) = 1, cn(x) = cos nπx
L , and sn(x) = sin nπx

L .
Similarly for am, m ̸= 0:

⟨f |cm⟩ = a0 ⟨c0|cm⟩︸ ︷︷ ︸
0

+
∞∑

n=1

an ⟨cn|cm⟩︸ ︷︷ ︸
Lδnm

+
∞∑

n=1

bn ⟨sn|cm⟩︸ ︷︷ ︸
0

= Lam.
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And for a0:

⟨f |c0⟩ = a0 ⟨c0|c0⟩︸ ︷︷ ︸
2L

+
∞∑

n=1

an ⟨cn|c0⟩︸ ︷︷ ︸
0

+
∞∑

n=1

bn ⟨sn|c0⟩︸ ︷︷ ︸
0

= 2La0.

Therefore, in summary, the Fourier coefficients for the Fourier series of Eqn. 1.6 are given by9

a0 =
1

2L
⟨f |c0⟩ =

1
2L

∫ L

−L
f(x) dx

an =
1
L
⟨f |cn⟩ =

1
L

∫ L

−L
f(x) cos(nπx

L ) dx n ≥ 1

bn =
1
L
⟨f |sn⟩ =

1
L

∫ L

−L
f(x) sin(nπx

L ) dx n ≥ 1

(1.7)

Exercise: Find the Fourier series for the periodic sawtooth function given by

f(x) = x, x ∈ [−1, 1], f(x) = f(x + 2)

1. Sketch f(x).

2. Write down the general expression for the Fourier series:

f(x) = a0 +
∞∑

n=1

an cos(knx) +
∞∑

n=1

bn sin(knx).

Q. What are the allowed values of kn given the periodicity of f(x)?

A. Since f(x + 2) = f(x), then cos(kn(x + 2)) = cos(knx) which implies that 2kn = 2nπ ⇒
kn = nπ (the result for sin(knx) is the same). Therefore

f(x) = a0 +
∞∑

n=1

an cos(nπx) +
∞∑

n=1

bn sin(nπx).

3. Either from first-principles, or using Eqns. 1.7, evaluate the coefficients a0, {an} and {bn}:

The final result is

f(x) =
∞∑

n=1

2
nπ

(−1)n+1 sin(nπx). (1.8)

9Note that a0 is the mean value of f(x) over one period.
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Writing out the first few terms explicitly:

f(x) =
2
π

[
sin(πx) − 1

2
sin(2πx) +

1
3

sin(3πx) − 1
4

sin(4πx) + . . .

]

Figure 1.2 shows f(x) and Fourier series approximations to f(x) with successively more terms.

-1

-0.5

 0

 0.5

 1

-1.5 -1 -0.5  0  0.5  1  1.5

Figure 1.2: Sawtooth function f(x) along with it’s Fourier series representations consisting of 1, 3,
6, and 20 terms.

This example highlights a number of interesting features and properties of Fourier series. For
example, why was an = 0 for all n? Why does the Fourier series for the sawtooth funtion
converge more slowly than that for the triangular wave? What is going on with the apparent
overshoot of the Fourier series for the sawtooth function at x = ±1?

1.5.2 Symmetry

A great deal of effort can be saved if one considers the symmetry of f(x) in advance. Take
the general Fourier series for a periodic function f(x + 2L) = f(x)

f(x) =
∞∑

n=0

an cos(nπx
L ) +

∞∑
n=1

bn sin(nπx
L )

and note that cos(x) = cos(−x) is an even function, while sin(x) = − sin(−x) is an odd
function. Then it follows that
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• if f(x) is odd, i.e., f(x) = −f(−x), then only sine terms can be present in the Fourier
series and an = 0 ∀ n,

• and if f(x) is even, i.e., f(x) = f(−x), then only cosine terms can be present in the
Fourier series and bn = 0 ∀ n.

1.6 Discontinuous Functions

Consider Fig. 1.2 again. The sawtooth function f(x) is discontinuous at x = ±1. Notice how
the value of the Fourier series at these points takes the arithmetic mean value of f(x) on
either side of the discontinuity. This is a general result: if x = x0 is a point of discontinuity
of f(x), then the value of the Fourier series F (x) at x = x0 is

F (x0) = 1
2 [f(x0+) + f(x0−)]

1.6.1 Convergence

Compare the Fourier series for the triangular wave (Eqn. 1.5 and Fig. 1.1) and the sawtooth
function (Eqn. 1.8 and Fig. 1.2). What is noticeable is that for the former, the Fourier
coefficients decrease as n−2, while for the latter they decrease more slowly as n−1. In other
words, the Fourier series for the sawtooth function converges more slowly as the importance of
successive terms does not decrease as fast. The difference is due to the fact that the sawtooth
function is discontinuous, while the triangular wave is continuous and has a discontinuous
first derivative.

In general if f (k−1)(x) is continuous, but f (k)(x) is not, then the Fourier coefficients will
decrease as n−(k+1).

1.6.2 Gibbs Phenomenon

Take a closer look at Fig. 1.2. Let us denote the Fourier series truncated at the N th term by
FN (x):

FN (x) =
N∑

n=0

an cos(knx) +
N∑

n=1

sin(knx).

What is clear is that as more terms of the Fourier series are included, a better representation
of the function f(x) is achieved in the sense that for a given value of x

|FN (x) − f(x)| → 0 as n → ∞.

However, if we zoom in on the discontinuity in Fig. 1.2, as shown in Fig. 1.3, we see that there
is a significant overshoot of FN (x). Furthermore, as we add more terms to the series, although
the position of the overshoot moves further towards the discontinuity, it’s magnitude remains
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Figure 1.3: Sawtooth function f(x) along with it’s Fourier series representations consisting of 3, 6,
and 20 terms.

finite. This is called the Gibbs phenomenon and it means that there is always an error in
representing a discontinuous function10. By adding in more terms the size of the region over
which there is an overshoot may be decreased, but the overshoot will always remain.

1.7 Half-Range Fourier Series

Consider the function
f(x) = 1 − x2 x ∈ [0, 1].

We have a number of choices for the periodic continuation of this function, fm(x), fe(x) and
fo(x), as plotted in Fig. 1.4.

In each case, the form of the Fourier series will be different.

1. fm(x) has a period of 1, and is of mixed odd/even symmetry, therefore the Fourier
coefficients of both sine and cosine terms will in general be non-zero and the series will
be of the general form:

fm(x) = a0 +
∞∑
i=1

an cos(2nπx) +
∞∑

n=1

bn sin(2nπx)

10This phenomenon is not unique to Fourier series and is true of other basis function expansions.
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(1) fm(x)
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(2) fe(x)
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(3) fo(x)

Figure 1.4: Three different periodic continuations of f(x) = 1 − x2 for x ∈ [0, 1].
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The argument of the sine and cosines is chosen to reflect the periodicity of fm(x), e.g.,
cos(2nπ(x + 1)) = cos(2nπx).

2. fe(x) has a period of 2, and is an even function of x, therefore the Fourier series will
only contain even functions (bn = 0):

fe(x) = a0 +
∞∑

n=1

an cos(nπx).

Note that the argument of the cosine is chosen so that the Fourier series has the same
periodicity as fe(x): cos(nπ(x + 2)) = cos(nπx).

3. fo(x) has a period of 2, and is an odd function of x, therefore the Fourier series will
only contain odd functions (an = 0):

fo(x) =
∞∑

n=1

bn sin(nπx).

Again the argument of the sine is chosen so that the Fourier series has the same peri-
odicity as fo(x): sin(nπ(x + 2)) = sin(nπx).

The expression for fm(x) is called a full-range Fourier series, whereas those for fe(x) and
fo(x) are called half-range Fourier series. Which is more “correct” to use depends on the
circumstances and the particular problem that is being addressed.

Example: Find the half-range cosine Fourier series for fe(x) above.

fe(x) = a0 +
∞∑

n=1

an cos(nπx).

To find a0, we should take the inner product of both sides of this expression with c0(x) = 1, i.e.,
we should integrate the expression over a full period [−1, 1] and use orthogonality. Because
of symmetry of the integrands, however, the integral over [−1, 0] is equal to that over [0, 1],
so actually we only need to integrate over [0, 1]:∫ 1

−1
fe(x) · 1 dx = a0

∫ 1

−1
1 dx +

∞∑
n=1

an

∫ 1

−1
cos(nπx) · 1 dx

2
∫ 1

0
(1 − x2) dx = a0 · 2

∫ 1

0
dx +

∞∑
n=1

an · 2
∫ 1

0
cos(nπx) dx

∫ 1

0
(1 − x2) dx = a0

∫ 1

0
dx +

∞∑
n=1

an

∫ 1

0
cos(nπx) dx

[
x − x3

3

]1

0

= a0 [x]10 + 0

2
3 = a0



14 MSE 201: Mathematics: Arash Mostofi (2010-11)

Similarly, to find am, we take the inner product with cm(x) = cos(mπx). Again, we may
exploit the symmetry of the integrands to only integrate over half of the period:∫ 1

−1
fe(x) cos(mπx) dx = a0

∫ 1

−1
cos(mπx) dx +

∞∑
n=1

an

∫ 1

−1
cos(nπx) cos(mπx) dx

∫ 1

0
(1 − x2) cos(mπx) dx = a0

∫ 1

0
cos(mπx) dx +

∞∑
n=1

an

∫ 1

0
cos(nπx) cos(mπx) dx

∫ 1

0
(1 − x2) cos(mπx) dx = 0 +

∞∑
n=1

an
1
2
δnm

=
am

2

Hence,

am

2
=

∫ 1

0
cos(mπx) dx −

∫ 1

0
x2 cos(mπx) dx

=
[
sin(mπx)

mπ

]1

0︸ ︷︷ ︸
0

−


[
x2 sin(mπx)

mπ

]1

0︸ ︷︷ ︸
0

−
∫ 1

0
2x

sin(mπx)
mπ

dx


=

∫ 1

0
2x

sin(mπx)
mπ

dx

=
[
−2x

cos(mπx)
(mπ)2

]1

0

+
2

(mπ)2

∫ 1

0
cos(mπx) dx︸ ︷︷ ︸

0

⇒ am

2
=

−2
(mπ)2

cos(mπ)

⇒ am =
4

(mπ)2
(−1)m+1.

Hence

fe(x) =
2
3

+
4
π2

∞∑
n=1

(−1)n+1

n2
cos(nπx)

Exercise: Find the half-range sine Fourier series for fo(x) above (see question on examples
sheet).

The result is

fo(x) =
∞∑

n=1

(
2

nπ
+

4
(nπ)3

[1 − (−1)n]
)

sin(nπx).

Note the n−1 dependence of the Fourier coefficients, as compared to n−2 for the continuous
function fe(x). Fig. 1.5 shows the sum of the first ten terms of the Fourier series of fe(x) and
fo(x).
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Figure 1.5: Sum of the first ten terms of the Fourier series for (a) fe(x) and (b) fo(x).

1.8 Parseval’s Theorem for Fourier Series

Consider a periodic function f(x) = f(x + 2L). As before, its Fourier series may be written
down generally as

f(x) = a0 +
∞∑

n=1

an cos(nπx
L ) +

∞∑
n=1

bn sin(nπx
L ).



16 MSE 201: Mathematics: Arash Mostofi (2010-11)

We saw earlier that the mean value of f(x) was simply a0:

1
2L

∫ L

−L
f(x) dx = a0.

Now consider the mean value of |f(x)|2:

1
2L

∫ L

−L
|f(x)|2 dx =

1
2L

∫ L

−L

[
a0 +

∞∑
m=1

{
am cos(mπx

L ) + bm sin(mπx
L )

}]

×

[
a0 +

∞∑
n=1

{
an cos(nπx

L ) + bn sin(nπx
L )

}]

⇒ 1
2L

∫ L

−L
|f(x)|2 dx = a2

0 +
1
2

∞∑
n=1

[
a2

n + b2
n

]
(1.9)

where all the cross terms have vanished by orthogonality. This is one form of Parseval’s
theorem.

In order to understand what it means, consider the nth harmonic in the Fourier series of f(x)
is

hn(x) = an cos(nπx
L ) + bn sin(nπx

L ).

Using a suitable trigonometric identity, this may be expressed as

hn(x) = γn sin(nπx
L + φn),

where γn =
√

a2
n + b2

n and tan(φn) =
an

bn
. Comparing with Parseval’s theorem, Eqn. 1.9, it

can be seen that each harmonic in the Fourier series contributes independently to the mean
square value of f(x).11

In many applications in physics, for example where f(x) represents a time-varying current in
an electrical circuit, or an electromagnetic wave, the power density (energy per unit length
transmitted per unit time) is proportional to the mean square value of f(x), given by Eqn. 1.9,
and the set of coefficients a2

0, {1
2γ2

n} is known as the power spectrum of f(x).

Exercise: Plot the power spectrum for fe(x) and fo(x) from the previous example.12

11This property is closely related to the completeness of the Fourier basis, which ensures that any function,
periodic on a given interval, may be represented as a sum of sines and cosines.

12In other words, draw a bar chart of the power contributed by the harmonics as a function of n.
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1.9 Fourier Transforms

1.9.1 Definition and Notation

Given f(x) such that
∫ ∞
−∞ |f(x)| dx < ∞, its Fourier transform f̃(k) is defined as

f̃(k) =
1√
2π

∫ ∞

−∞
f(x) e−ikx dx (1.10)

The inverse Fourier transform is defined as

f(x) =
1√
2π

∫ ∞

−∞
f̃(k) eikx dk (1.11)

A varied set of notation is used to represent Fourier transforms, the most common of which
are given below.

f̃ ≡ f̂ ≡ F ≡ F[f ] ≡ FT[f ] and f ≡ F−1[f̃ ] ≡ FT−1[f̃ ]

Fourier transforms are defined such that if one starts with f(x) and performs a forward
transform followed by an inverse transform on the result, then one ends up with f(x) again,

f(x) F−→ f̃(k) F−1

−→ f(x)

which provides a definition of the Dirac delta-function, which we will come to in Section 1.11.

Conditions on f(x)

• Piecewise continuous

• Differentiable

• Absolutely integrable:
∫ ∞
−∞ |f(x)| dx < ∞
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1.9.2 Relation to Fourier Series

When we looked at Fourier series, we considered the Fourier basis used to expand a periodic
function f(x) as consisting of sine and cosine functions with the same periodicity as f(x):

f(x) = a0 +
∞∑

n=1

[an cos(knx) + bn sin(knx)] ,

where kn is chosen to satisfy the correct periodicity.

An entirely equivalent representation is provided by a basis of complex exponential functions
(also known as plane-waves)

e±iknx = cos(knx) ± i sin(knx).

Substituting this Euler13 relation into the expression for f(x) gives

f(x) =
∞∑

n=−∞
cneiknx

where the (complex) coefficient cn is related to an and bn (see question on examples sheet).

Consider the function to have periodicity of L, i.e., f(x) = f(x + L). Then we require
knL = 2nπ ⇒ kn = 2nπ

L . I.e., we have a sum of plane waves that have wavevectors14 kn

separated by ∆k =
2π

L
. Hence

f(x) =
∞∑

n=−∞
cneiknx L∆k

2π

We now let L → ∞15, so the spacing of wavevectors (and hence frequencies) approaches zero
∆k → 0, and the discrete set of kn becomes a continuous variable k, and the infinite sum
becomes an integral over k:

f(x)
L→∞,∆k→0−→ 1√

2π

∫ ∞

−∞
f̃(k)eikx dk

where we have defined f̃(k) ≡ lim
∆k→0

cnL√
2π

. This is exactly the expression in Eqn. 1.11.

Therefore, the Fourier transform may be thought of as the generalisation of Fourier series
to the case of non-periodic functions.

13Leonhard Paul Euler (1707-1783), Swiss mathematician and physicist who made many pioneering contri-
butions.

14The wavevector k is related to the wavelength L and frequency f by k =
2π

L
=

2πf

c
, where c is the wave

speed.
15In other words, the function f(x) is no longer periodic on any finite interval.
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1.9.3 Properties of the Fourier Transform

Usually f(x) = f∗(x) is a real function, and we shall assume this to be the case. f̃(k) is,
however, in general complex,

f̃∗(k) =
1√
2π

∫ ∞

−∞
f∗(x)

(
e−ikx

)∗
dx =

1√
2π

∫ ∞

−∞
f(x) eikx dx ̸= f̃(k)

If f(x) has definite symmetry, however, then f̃(k) may be either purely real or purely imagi-
nary,

• If f(x) = f(−x) is an even function ⇒ f̃∗(k) = f̃(k) is purely real.

• If f(x) = −f(−x) is an odd function ⇒ f̃∗(k) = −f̃(k) is purely imaginary.

Further useful properties include16

• Differentiation.
F

[
f (n)(x)

]
= (ik)nf̃(k)

In particular

◦ F

[
df

dx

]
= ikf̃(k)

◦ F

[
d2f

dx2

]
= −k2f̃(k)

• Multiplication by x.

F[xf(x)] = i
df̃(k)

dk

• Rigid shift of co-ordinate.
F[f(x − a)] = e−ikaf̃(k)

1.9.4 Examples of Fourier Transforms

1. Find the Fourier transform of a square wave

f(x) =


1 x ∈ [0, 1]
−1 x ∈ [−1, 0]
0 |x| > 1

16Proofs are left as an exercise in the examples sheet.
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Exercise: Sketch f(x).

f̃(k) =
1√
2π

∫ ∞

−∞
f(x) e−ikx dx

=
1√
2π

[
−

∫ 0

−1
e−ikx dx +

∫ 1

0
e−ikx dx

]
=

1√
2π

{
−

[
−1
ik

e−ikx

]0

x=−1

+
[
−1
ik

e−ikx

]1

x=0

}
=

1√
2π

1
ik

[
2 −

(
eik + e−ik

)]
=

1√
2π

2
ik

(1 − cos k)

=
1√
2π

· 4
ik

sin2
(

k
2

)
Note that since f(x) is odd, f̃(k) is imaginary.

Exercise: Sketch |f̃(k)|.

2. Find the Fourier transform of a top-hat function

f(x) =
{

1 |x| < a
0 |x| ≥ a

Exercise: Sketch f(x).

f̃(k) =
1√
2π

∫ ∞

−∞
f(x) e−ikx dx

=
1√
2π

∫ a

−a
e−ikxdx

=
1√
2π

[
− 1

ik
e−ikx

]a

x=−a

=
1√
2π

[
− 1

ik

(
e−ika − eika

)]
=

√
2
π

sin(ka)
k

Note that since f(x) is even, f̃(k) is real.
Exercise: Sketch f̃(k).

1.9.5 Bandwidth Theorem

The last example is a good demonstration of the bandwidth theorem or uncertainty principle:
if a function f(x) has a spread ∆x in x-space of, then it’s spread ∆k in k-space will be such
that

∆x ∼ 1
∆k
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The mathematics here is analogous to that behind the Heisenberg Uncertainty Principle in
Quantum Mechanics, which states that for a quantum mechanical particle, such as an electron,
its position x and momentum p cannot be both known simultaneously to arbitrary accuracy.

∆x ≥ h

∆p

where h is Planck’s constant.

Another implication is for, eg, laser pulses: the shorter the pulse in time t, the larger the
spread ∆ω of frequencies of harmonics that constitute it (see example on question sheet).

1.10 Diffraction Through an Aperture

An application of Fourier transforms is in determining diffraction patterns resulting from light
incident on an aperture. (The analysis is the same for diffraction of X-rays through crystals.)

It can be shown (though we do not have time to do so here) that the intensity I(k) of light
observed in the diffraction pattern is just the square of the Fourier transform of the aperture
function h(x):

I(k) = |F[h(x)]|2

where, refering to Fig. 1.6, k = 2π sin θ
λ , where λ is the wavelength of the incident light

and θ is the angle to the observation point on the screen. For small values of θ we have
sin θ ≈ tan θ = X/D, hence k ≈ 2πX

λD , i.e., k is proportional to the displacement of the
observation point on the screen.

Consider diffraction through a single slit of width a as an example. The aperture function is
given by a top-hat

h(x) =
{

1 x ∈ [−a
2 , a

2 ]
0 otherwise

ie, h = 1 corresponds to transparent parts of the aperture, and h = 0 to opaque parts.

As we showed before, the fourier transform of a top-hat function is given by a sinc function:

h̃(k) =

√
2
π

sin(ka/2)
k

=
a sinc(ka/2)√

2π

Hence the intensity is given by

I(k) =
a2 sinc2(ka/2)

2π
.

The aperture function and intensity are plotted in Figs. 1.7 and 1.8.
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Figure 1.6: Geometry for Fraunhofer diffraction.

1.11 Dirac Delta-Function

As noted earlier, if we Fourier transform a function and then inverse Fourier transform the
result, we should get back our original function:

f
F−→ f̃

F−1

−→ f

Let’s take Eqn. 1.11 as our starting point and substitute f̃(k) from Eqn. 1.10 into it

f(x) =
1√
2π

∫ ∞

−∞
f̃(k) eikx dk

=
1√
2π

∫ ∞

−∞

[
1√
2π

∫ ∞

−∞
f(x′) e−ikx′

dx′
]

eikx dk

=
∫ ∞

−∞
f(x′)

[
1
2π

∫ ∞

−∞
eik(x−x′) dk

]
︸ ︷︷ ︸

δ(x−x′)

dx′

⇒ f(x) =
∫ ∞

−∞
f(x′) δ(x − x′) dx′ (1.12)

where we have defined the Dirac delta-function17

17Paul Adrien Maurice Dirac (1902-1984), British theoretical physicist. Dirac shared the Nobel Prize in
Physics (1933) with Erwin Schrödinger, for aspects of Quantum Theory.
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Figure 1.7: Aperture function for single slit of width a.
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Figure 1.8: Diffraction pattern for single slit of width a: I(k) =
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sinc2(ka/2).
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δ(x − x′) =
1
2π

∫ ∞

−∞
eik(x−x′) dk (1.13)

whose fundamental, defining property is Eqn. 1.12, reproduced here:

∫ b

a
g(x′) δ(x − x′) dx′ = g(x) if x ∈ [a, b] (1.14)

What this shows is that under integration the delta-function “picks out” the value of g(x) at
the point on which the delta-function is centred.

1.11.1 Properties of δ(x)

The Dirac delta-function δ(x − x′) is a “spike”, centred on x = x′, with zero width, infinite
height and unit area underneath18

δ(x − x′) =
{

∞ x = x′

0 otherwise

• δ(x) = δ(−x) is an even function

• δ∗(x) = δ(x) is a real function

• The area under δ(x) is 1 ∫ η

−η
δ(x) dx = 1 ∀ η > 0

• The Fourier transform of δ(x) is a constant

δ̃(k) =
1√
2π

∫ ∞

−∞
δ(x) e−ikx dx =

1√
2π

e−ikx
∣∣∣
x=0

=
1√
2π

1.11.2 Understanding δ(x)

δ(x) as the Limit of a Sinc Function

Keeping Eqn. 1.13 in mind, consider the integral:

δϵ(x) =
1
2π

∫ 1/ϵ

−1/ϵ
eikx dk

18Technically, this definition is only heuristic as δ(x) can not really be called a function, rather it is a
distribution which is defined only under integration, as in Eqn. 1.14.
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We can see that

δ(x) = lim
ϵ→0

δϵ(x)

We can integrate the expression for δϵ(x):

δϵ(x) =
1
2π

[
eikx

ix

]1/ϵ

k=−1/ϵ

=
1
ϵπ

sin(x/ϵ)
x/ϵ

⇒ δϵ(x) =
sinc(x/ϵ)

ϵπ

Where sincx ≡ sinx

x
.

δϵ(x) is plotted in Fig. 1.9 for different values of ϵ.

δ(x) as the Limit of a Top-Hat Function

δ(x) may be thought of as the limit of a top-hat function of width ϵ and height 1
ϵ as ϵ → 0:

δ(x) = lim
ϵ→0

δϵ(x)

where

δϵ(x) =
{

ϵ−1 |x| < ϵ/2
0 otherwise

δϵ(x) is sketched for different values of ϵ in Fig. 1.10.

Using Fig. 1.11 as a guide, consider the limit

lim
ϵ→0

∫ x+ϵ/2

x−ϵ/2
f(x′) δϵ(x − x′) dx′ = lim

ϵ→0

∫ x+ϵ/2

x−ϵ/2
f(x′)

1
ϵ

dx′

= lim
ϵ→0

f(a)
∫ x+ϵ/2

x−ϵ/2
f(x′)

1
ϵ

dx′ a ∈ [x − ϵ

2
,
x + ϵ

2
]

= lim
ϵ→0

f(a)
[
x′

ϵ

]x+ϵ/2

x−ϵ/2

⇒
∫

f(x′) δ(x − x′) dx′ = f(x),

which is exactly Eqn. 1.14.
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Figure 1.9: δϵ(x) =
sinc(x/ϵ)

ϵπ
for ϵ ∈ {1, 0.2, 0.1}.
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Figure 1.10: δϵ(x) for ϵ ∈ {1, 0.5, 0.2, 0.1}.
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Figure 1.11: Generic sketch of f(x) and δϵ(x).

δ(x) as the Continuous Analogue of δij

The Dirac delta-function can also be thought of as the continuous analogue of the discrete
Krönecker-delta δij which has a property analogous to Eqn. 1.14, but for discrete variables

∑
j

δijgj = gi.
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1.12 Parseval’s Theorem for Fourier Transforms

Parseval’s theorem for Fourier transforms states that

∫ ∞

−∞
|f(x)|2 dx =

∫ ∞

−∞
|f̃(k)|2 dk (1.15)

Proof: ∫ ∞

−∞
|f(x)|2 dx =

∫ ∞

−∞
f(x)f∗(x) dx

=
1
2π

∫ ∞

−∞

[∫ ∞

−∞
f̃(k)eikx dk

]
·
[∫ ∞

−∞
f̃∗(k′)e−ik′x dk′

]
dx

=
∫ ∞

−∞

∫ ∞

−∞
f̃(k)f̃∗(k′)

[
1
2π

∫ ∞

−∞
ei(k−k′)x dx

]
︸ ︷︷ ︸

δ(k−k′)

dkdk′

=
∫ ∞

−∞

∫ ∞

−∞
f̃(k)f̃∗(k′) δ(k − k′) dkdk′

=
∫ ∞

−∞
f̃(k)f̃∗(k) dk

=
∫ ∞

−∞
|f̃(k)|2 dk.

The above proof may be easily generalised for two different functions f(x) and g(x):

∫ ∞

−∞
f(x)g∗(x) dx =

∫ ∞

−∞
f̃(k)g̃∗(k) dk (1.16)

1.13 Convolution Theorem for Fourier Transforms

The convolution of two functions f(x) and g(x) is defined as

f ∗ g ≡
∫ ∞

y=−∞
f(y)g(x − y) dy (1.17)
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from which it is easy to show that f ∗ g = g ∗ f : in the above equation, let ξ = x − y ⇒ y =
x − ξ, dy = −dξ

f ∗ g =
∫ −∞

ξ=∞
f(x − ξ)g(ξ) (−dξ)

=
∫ ∞

−∞
g(ξ)f(x − ξ) dξ

⇒ f ∗ g = g ∗ f

The convolution theorem may be stated in two, equivalent forms. Given two functions f and
g,

1. the Fourier transform of their convolution is directly proportional to the product of
their Fourier transforms:

F[f ∗ g] =
√

2π f̃ g̃ (1.18)

2. the Fourier transform of their product is directly proportional to the convolution of
their Fourier transforms:

F[fg] =
1√
2π

f̃ ∗ g̃ (1.19)

The proofs are very similar, so we shall treat one here and the other is left as an exercise in
the examples sheet.
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Proof:

F[f ∗ g] =
1√
2π

∫ ∞

−∞
[f ∗ g](x)e−ikx dx

=
1√
2π

∫ ∞

−∞

[∫ ∞

−∞
f(y)g(x − y) dy

]
e−ikx dx

=
∫ ∞

−∞
f(y)

[
1√
2π

∫ ∞

−∞
g(x − y)e−ikx dx

]
dy (interchanging order of integration)

=
∫ ∞

−∞
f(y)e−iky

[
1√
2π

∫ ∞

−∞
g(x − y)e−ik(x−y) dx

]
dy (× by e−ikyeiky = 1)

=
∫ ∞

−∞
f(y)e−iky

[
1√
2π

∫ ∞

−∞
g(ξ)e−ikξ dξ

]
︸ ︷︷ ︸

g̃(k)

dy (substituting ξ = x − y)

=
[∫ ∞

−∞
f(y)e−iky dy

]
︸ ︷︷ ︸

√
2πf̃(k)

g̃(k)

=
√

2π f̃(k)g̃(k)

Among many other things, the convolution theorem may be used to calculate diffraction
patterns of light incident on complicated apertures. In the next section, we will consider the
case of Young’s double slit experiment.

1.14 Double Slit Diffraction

Earlier it was discussed how, in a Fraunhofer diffraction experiment, the amplitude of the
signal at the detection screen is given by the fourier transform of the aperture function h(x).
The intensity I(k) that is observed is then just the square of this amplitude:

I(k) =
∣∣∣h̃(k)

∣∣∣2
where, with reference to Fig. 1.6, k = 2π sin θ

λ , where λ is the wavelength of the incident wave
and θ is the angle of observation. For small values of θ we have sin θ ≈ tan θ = X/D, hence
k ≈ 2πX

λD , i.e., k is proportional to the displacement of the observation point on the screen.

We saw earlier that for a single slit of width a, the aperture function of which is described by
a top-hat function, the intensity observed is given by

I(k) =
a2

2π
sinc2(ka/2).

The aperture function and intensity are plotted in Figs. 1.7 and 1.8.
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The aperture function for a double slit is shown in Fig. 1.12. Here the slit separation is d and
the slit width is a.

We could go ahead and evaluate the Fourier transform of the aperture function h(x) for the
double slit, but there is a more clever approach which uses the convolution theorem.

We note that h(x) is actually the convolution of a double Dirac-delta function (with separation
d) with a top-hat function of width a, as shown in Fig. 1.13

h(x) = f ∗ g(x).

The intensity at the screen is given by

I(k) =
∣∣∣h̃(k)

∣∣∣2 = |F[f ∗ g]|2

and, from the convolution theorem we know that

F[f ∗ g] =
√

2πF[f ]F[g]

Hence, we can obtain the intensity from the Fourier transforms of f(x) and g(x). g(x) is a
top-hat, and as we’ve seen before, it is easy to show that

F[g] =
a√
2π

sinc(ka/2)

For the double Dirac-delta function, we see that

f(x) = δ(x − d/2) + δ(x + d/2)

hence

F[f ] =
1√
2π

∫ ∞

−∞
[δ(x − d/2) + δ(x + d/2)] e−ikx dx

=
1√
2π

[
e−ikd/2 + eikd/2

]
=

√
2
π

cos(kd/2)

Putting it all together we see that the intensity on the screen is given by
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Figure 1.12: Aperture function for double slit: slit width a, separation d.

∗ =

f(x) g(x) h(x) = f ∗ g

Figure 1.13: Convolution theorem for double slit.
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Figure 1.14: Diffraction pattern for double slit.

I(k) =
2a2

π
sinc2(ka/2) cos2(ka/2)

which is plotted in Fig. 1.14.

What is seen is the broad envelope function which comes from the sinc(ka/2) factor, and the
denser interference fringes that come from the cos(kd/2) factor. Note that d > a, which is
why the frequency of the fringes is higher than that of the envelope function (a manifestation
of the bandwidth theorem that was discussed in a previous lecture).

1.15 Differential Equations

One important use of Fourier transforms is in solving differential equations. A Fourier trans-
form may be used to transform the a differential equation into an algebraic equation since

F

[
∂nf

∂xn

]
= (ik)nF[f ].
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1.15.1 Example: Heat Diffusion Equation

Consider an infinite, one-dimensional bar which has an initial temperature distribution given
by θ(x, t = 0) = δ(x). This is clearly a somewhat unphysical situation, but it’s not such a
bad approximation to having a situation in which a lot of heat is initially concentrated at the
mid-point of the rod.

The flow of heat is determined by the diffusion equation

D
∂2θ

∂x2
=

∂θ

∂t

which is second-order in x and first-order in t. D is the diffusion coefficient. The boundary
conditions on this problem are that θ(±∞, t) = 0.

Consider what happens if we Fourier transform both sides of this equation with respect to
the variable x:

1√
2π

∫ ∞

−∞
D

∂2θ

∂x2
e−ikx dx =

1√
2π

∫ ∞

−∞

∂θ

∂t
e−ikx dx

D
1√
2π

∫ ∞

−∞

∂2θ

∂x2
e−ikx dx =

∂

∂t

[
1√
2π

∫ ∞

−∞
θ(x, t)e−ikx dx

]
DF

[
∂2θ(x, t)

∂x2

]
=

∂

∂t
F[θ(x, t)]

−Dk2θ̃(k, t) =
∂θ̃(k, t)

∂t

So the differential equation in x is replaced by an algebraic equation in k. We still have a
differential equation in t which is first-order, and also easy to solve:

θ̃(k, t) = A(k)e−Dk2t

where A(k) = θ̃(k, t = 0), a constant of integration, is just the Fourier transform of the initial
condition θ(x, t = 0) = δ(x), which we can calculate:

A(k) = θ̃(k, t = 0) =
1√
2π

∫ ∞

−∞
δ(x)e−ikx dx =

1√
2π

.

Hence,

θ̃(k, t) =
1√
2π

e−Dk2t
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So, we have Fourier transformed the original differential equation from “x-space” to “k-space”,
solved it in k-space, and applied the initial condition in k-space. All that remains to be done
is to inverse Fourier transform θ̃(k, t) back in order to obtain the solution in x-space.

In practice, this is typically the most difficult part of the process (there’s no such thing as
a free lunch!), but for the example we have chosen, it turns out to be not too bad because,
through completing the square and changing the variable of integration, we are able to reduce
the problem to a Gaussian integral of known value19:

θ(x, t) = F−1[θ̃(k, t)]

=
1
2π

∫ ∞

−∞
e−Dk2teikx dx

=
1
2π

∫ ∞

−∞
e−Dt[(k−ix/2Dt)2]−x2/4Dt dx combining exponents and completing the square

=
1
2π

e−x2/4Dt

∫ ∞

−∞
e−Dtq2

dq changing variable to q = k − ix/2Dt ⇒ dq = dk

=
1
2π

√
π

Dt
e−x2/4Dt

using the standard result for a Gaussian integral

Hence the final result20

θ(x, t) =
1

2
√

πDt
e−x2/4Dt

Exercise: Verify that θ(x, t) satisfies the original differential equation and boundary condi-
tions.

Fig. 1.15 shows the temperature distribution for different times t. Is the behaviour as you
would expect?

19
R ∞
−∞ e−αx2

dx =
p

π/α.
20The observant will have noticed that, in the fourth line of the derivation above, I should also have changed

the limits on the integral to q = ±∞− ix/2Dt, thus taking the contour of the integral off the real-q axis. It
turns out that I’m allowed to shift the contour back to the real-axis since the integrand has no singularities
anywhere. This is the subject of fields of mathematics known as complex analysis and contour integration,
which have many uses in physics and engineering, but which we won’t cover in the course this year.
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Figure 1.15: θ(x, t) for three different values of t.


