$$
\begin{aligned}
& \text { 子 } \mathrm{X} \text { 乙/(^+n) = s. } \\
& \text { seて+ 乙vn = 乙v^• }
\end{aligned}
$$

ұиәшәэe｜ds！̣ s！s
Zvłt 乙/L + ұn = s •

¡＋n＝＾•
－uo！！ow fo suo！̣enbə ınoł əપц

uo！！ow to suo！̣enbヨ

Scalar and Vectors

Scalars only have size，Vectors have size and direction．
－Scalars－mass，temp．，time，length，speed，energy．
－Vectors－displacement，force，velocity，acceleration，momentum．
You can add vectors using pythagoras（a2＋b2＝c2）and trigonometry（SOHCAHTOA）．You can also use pythagoras and trigonometry for adding resultant forces or velocities．

When adding vectors make sure they are tip to tail，and if the vectors aren＇t at right angles you should do a scale drawing．
'еәле әseq әр!м е pue К!!лелб ңо әдииәэ моן е

 К!!лелб x ssew = ұчб!әМ $\boldsymbol{\sigma}_{\mathrm{w}}=\mathbf{M}$

Newton's Laws of Motion

Newton's 1st Law - The velocity of an object will not change unless a resultant force acts on it. Eg. Apple on a table wont go anywhere because the forces on it are balanced.

Reaction (R) = weight (kg)
Newton's 2nd Law - Acceleration is proportional to the force.
resultant force $(\mathrm{N})=\operatorname{mass}(\mathrm{kg}) \times$ acceleration $(\mathrm{ms}-2)[\mathrm{F}=\mathrm{m} \times \mathrm{a}$]
Remember - Resultant force is the vector sum of all the forces. The acceleration is independant of the mass.

All objects fall at the same rate (if you ignore air resistance).
Newton's 3rd Law - Each force has an equal, opposite reaction force. Eg. If an object A exerts a force on object B, then object B exerts an equal but opposite force on object A. The forces are always the same type but the forces are not both applied to the same object.
＇sұuәuodmos ןеэ！ıəәл pue

[s」=M] (w) әэuełs!a x (N) әכло」 =
＇рәлләциедц s！Кбләиә дәләиәчм әиор s！члом

Forces

Free body force diagrams show all the forces on a single body．If a body is in equilibrium the forces acting on it will be balanced．Some of the forces to look out for－mg（weight），drag，push， friction，resistance（to earth）．

Force calculations－Resolving a force．Resolving a force means spliting it into components－ vertical and horizontal．Replace the Force（F）with vertical force（Fv）and horizontal force（Fh） and this is resolving the Force（F）．You use trigonometry to find Fv and Fh．
$F h=F \cos$（the angle）
Fv＝F sin（the angle）
Use vector addition to get the resultant force．First add the vectors together and use pythagoras to get the length，then divide your A and B from pythagoras section，take that answer and put it totan－1．You now have the angle，most answers go along the lines of Force 999N at an angle 99 degrees from north．

-(6u!чsnıэ ұиәләлd oł

 әцł әsеәли! pue Кןןепрелб әлош имор nоК моןs оł рәиб!

әш!! ио!!эeәу x pәәds = әэиеъs!p бu!หи!иц

рן૦М ןеәપ્વ Әપł u! Sગ!uецગəW

Power

Power equals work done per second.
Power (W) = Work Done (J) / Time (s) [P=Wt]
The watt is defined as a rate of energy transfer equal to 1 joule per second.
Power (W) = Force (N) x Velocity (ms-1) [P=Fv]
This equation can be helpful when you are given speed in a question.Sometimes in a power question the force and the motion are in different directions, like with work, we then use horizontal and vertical components.
$P=F v \cos$ (the angle) smous

- э!ısеןə до э!ısejd әq ueว цџəәцs \forall

'pəКәqо s! меן sәуоон иәцұ ио!sиәұхә рие реоן иәәмұәq d!иsио!ıеןәл

Conservation of Energy

Principle of Conservation of Energy - Energy cannot be created or destroyed. Energy can be transferred from one form to another but the total amount of energy in a closed system will not change.

Ek = 1/2 mv2 - Kinetic Energy
($\mathrm{m}=\mathrm{mass}, \mathrm{v}=$ velocity)

Eg = mgh - Gravitational Potential Energy
($\mathrm{m}=$ mass, $\mathrm{g}=$ gravity, $\mathrm{h}=$ height)
$E=1 / 2 \mathrm{Ke} 2-$ Elastic Potential
($\mathrm{e}=$ extension, $\mathrm{K}=$ stiffness)

－имор Кпиц！！！s

＇u！̣едя е səsneo ssəдı \forall

U！！edis pue ssəlis

Young Modulus

The Young Modulus is stress／strain．Below the limit of proportionality for a material，stress divided by strain is a constant，the constant is called the Young Modulus（E）．It is used by engineers to make sure materials can withstand forces．
$E=$ stress／strain $=F / A / e / l$
To find the Young Modulus you need a very long wire．Use a rule，marker and a pulley with some weights．The longer and thinner the wire，the more it extends for the same force．Take the correct measurements down and you can find the Young Modulus．

Use a stress－strain graph to find E．
Gradient $=$ stress $/$ strain $=E$（Young Modulus）
The area under a stress－strain graph gives the stored energy．When Hookes law is obeyed the stress－strain graph will have a straight line so you can calculate the energy per unit volume－
energy $=1 / 2 x$ strain x stress
-ydeגб әس!!

sudeגפ әس!ı - К К!!əo|ə^

Behaviour of solids

- Brittle - materials break suddenly without plastically deforming. Eg. chocolate bar, ceramics
- Ductile - materials can be drawn into wires without losing their strength. Eg. copper for wires.
- Malleable - materials change shape but may lose their strength. Eg. Gold, gold rings can be changed shape very easily but a gold bar wouldnt.
- Hard - materials are very resistant to cutting, indentation and abrasions. Eg. cutting tool like a chisel, diamond.
- Stiff - materials have a high resistance to bending and stretching. Stiffness is measured by the Young Modulus - the higher the value, the stiffer the material. Eg. Helmets.
- Tough - materials are really difficult to break. Really tough materials can absorb a lot of energy so are very difficult to break. Eg. Polymers.

Stress-strain graphs for ductile materials curve. A straight line shows it obeys Hookes law, the limit of proportionality (P) is the point where the graph starts to curve, the elastic limit (E) is where the material wouldnt return to its original length and the yield point (Y) is where the material starts to stretch without any extra load.

$\angle 1$ fo 91

moly pue səu!|weəıIS

Displacement - Time Graphs

Acceleration means a curved Displacement-Time Graph. Different acceleration have different gradients, bigger accelerations have steeper gradients. Decreasing acceleration has the curve going the other way. The gradient of a Displacement-Time graph gives you the velocity and its the same with curved lines, you just have to draw a tangent.
velocity $=$ change in displacement / time taken

\wedge ^u(!d) 9 = 」

иәуең әш!! / рәлош әшпןО $=$ моן! !о әдеу

